题目
设X,Y是独立随机变量,分别服从参数为lambda_(1),lambda_(2)的泊松分布,试证明PX=k|X+Y=n=C_(n)^k((lambda_(1))/(lambda_(1)+lambda_{2)})^k((lambda_(2))/(lambda_(1)+lambda_{2)})^n-k,k=0,1,...,n
设X,Y是独立随机变量,分别服从参数为$\lambda_{1},\lambda_{2}$的泊松分布,试证明
$P\{X=k|X+Y=n\}=C_{n}^{k}(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}})^{k}(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}})^{n-k},k=0,1,\cdots,n$
题目解答
答案
为了证明 $ P\{X=k|X+Y=n\} = C_{n}^{k} \left( \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \right)^{k} \left( \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \right)^{n-k} $,我们首先使用条件概率的定义。条件概率 $ P\{X=k|X+Y=n\} $ 可以表示为:
\[ P\{X=k|X+Y=n\} = \frac{P\{X=k, X+Y=n\}}{P\{X+Y=n\}}. \]
由于 $ X $ 和 $ Y $ 是独立的随机变量,且分别服从参数为 $ \lambda_1 $ 和 $ \lambda_2 $ 的泊松分布,我们有:
\[ P\{X=k\} = \frac{e^{-\lambda_1} \lambda_1^k}{k!} \quad \text{和} \quad P\{Y=n-k\} = \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n-k)!}. \]
因此,联合概率 $ P\{X=k, X+Y=n\} $ 等于 $ P\{X=k, Y=n-k\} $,即:
\[ P\{X=k, X+Y=n\} = P\{X=k\} P\{Y=n-k\} = \frac{e^{-\lambda_1} \lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n-k)!} = \frac{e^{-(\lambda_1+\lambda_2)} \lambda_1^k \lambda_2^{n-k}}{k! (n-k)!}. \]
接下来,我们需要计算 $ P\{X+Y=n\} $。由于两个独立的泊松随机变量的和仍然是泊松随机变量,其参数为两个泊松分布参数的和,我们有:
\[ P\{X+Y=n\} = \frac{e^{-(\lambda_1+\lambda_2)} (\lambda_1+\lambda_2)^n}{n!}. \]
现在,我们可以将这些结果代入条件概率的表达式中:
\[ P\{X=k|X+Y=n\} = \frac{\frac{e^{-(\lambda_1+\lambda_2)} \lambda_1^k \lambda_2^{n-k}}{k! (n-k)!}}{\frac{e^{-(\lambda_1+\lambda_2)} (\lambda_1+\lambda_2)^n}{n!}} = \frac{\lambda_1^k \lambda_2^{n-k}}{k! (n-k)!} \cdot \frac{n!}{(\lambda_1+\lambda_2)^n} = \frac{n!}{k! (n-k)!} \left( \frac{\lambda_1}{\lambda_1+\lambda_2} \right)^k \left( \frac{\lambda_2}{\lambda_1+\lambda_2} \right)^{n-k} = C_n^k \left( \frac{\lambda_1}{\lambda_1+\lambda_2} \right)^k \left( \frac{\lambda_2}{\lambda_1+\lambda_2} \right)^{n-k}. \]
Thus, the proof is complete.
\[ \boxed{C_n^k \left( \frac{\lambda_1}{\lambda_1+\lambda_2} \right)^k \left( \frac{\lambda_2}{\lambda_1+\lambda_2} \right)^{n-k}}. \]