题目
[题目] lim _(narrow infty )(dfrac (1)({n)^2+1}+dfrac (2)({n)^2+2}+... +dfrac (n)({n)^2+n}) __

题目解答
答案

解析
步骤 1:确定上下界
首先,我们注意到每一项 $\dfrac{k}{{n}^{2}+k}$ 都在 $\dfrac{k}{{n}^{2}+n}$ 和 $\dfrac{k}{{n}^{2}+1}$ 之间。因此,整个序列的和也在这两个和之间。即:
$$\dfrac{1}{{n}^{2}+n}+\dfrac{2}{{n}^{2}+n}+\cdots+\dfrac{n}{{n}^{2}+n} \leq \dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+2}+\cdots+\dfrac{n}{{n}^{2}+n} \leq \dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+1}+\cdots+\dfrac{n}{{n}^{2}+1}$$
步骤 2:计算上下界的极限
计算左边的和,我们得到:
$$\dfrac{1}{{n}^{2}+n}+\dfrac{2}{{n}^{2}+n}+\cdots+\dfrac{n}{{n}^{2}+n} = \dfrac{1+2+\cdots+n}{{n}^{2}+n} = \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+n}$$
计算右边的和,我们得到:
$$\dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+1}+\cdots+\dfrac{n}{{n}^{2}+1} = \dfrac{1+2+\cdots+n}{{n}^{2}+1} = \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+1}$$
步骤 3:应用夹逼定理
现在,我们计算这两个和的极限:
$$\lim_{n\to\infty} \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+n} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}n^2+\dfrac{1}{2}n}{{n}^{2}+n} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}+\dfrac{1}{2n}}{1+\dfrac{1}{n}} = \dfrac{1}{2}$$
$$\lim_{n\to\infty} \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+1} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}n^2+\dfrac{1}{2}n}{{n}^{2}+1} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}+\dfrac{1}{2n}}{1+\dfrac{1}{{n}^{2}}} = \dfrac{1}{2}$$
由于这两个极限都等于 $\dfrac{1}{2}$,根据夹逼定理,原序列的极限也等于 $\dfrac{1}{2}$。
首先,我们注意到每一项 $\dfrac{k}{{n}^{2}+k}$ 都在 $\dfrac{k}{{n}^{2}+n}$ 和 $\dfrac{k}{{n}^{2}+1}$ 之间。因此,整个序列的和也在这两个和之间。即:
$$\dfrac{1}{{n}^{2}+n}+\dfrac{2}{{n}^{2}+n}+\cdots+\dfrac{n}{{n}^{2}+n} \leq \dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+2}+\cdots+\dfrac{n}{{n}^{2}+n} \leq \dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+1}+\cdots+\dfrac{n}{{n}^{2}+1}$$
步骤 2:计算上下界的极限
计算左边的和,我们得到:
$$\dfrac{1}{{n}^{2}+n}+\dfrac{2}{{n}^{2}+n}+\cdots+\dfrac{n}{{n}^{2}+n} = \dfrac{1+2+\cdots+n}{{n}^{2}+n} = \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+n}$$
计算右边的和,我们得到:
$$\dfrac{1}{{n}^{2}+1}+\dfrac{2}{{n}^{2}+1}+\cdots+\dfrac{n}{{n}^{2}+1} = \dfrac{1+2+\cdots+n}{{n}^{2}+1} = \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+1}$$
步骤 3:应用夹逼定理
现在,我们计算这两个和的极限:
$$\lim_{n\to\infty} \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+n} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}n^2+\dfrac{1}{2}n}{{n}^{2}+n} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}+\dfrac{1}{2n}}{1+\dfrac{1}{n}} = \dfrac{1}{2}$$
$$\lim_{n\to\infty} \dfrac{\dfrac{1}{2}n(n+1)}{{n}^{2}+1} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}n^2+\dfrac{1}{2}n}{{n}^{2}+1} = \lim_{n\to\infty} \dfrac{\dfrac{1}{2}+\dfrac{1}{2n}}{1+\dfrac{1}{{n}^{2}}} = \dfrac{1}{2}$$
由于这两个极限都等于 $\dfrac{1}{2}$,根据夹逼定理,原序列的极限也等于 $\dfrac{1}{2}$。