题目
2、设随机变量X的概率密度为 f(x)= ) x,0lt xlt 1 a-x,1leqslant xleqslant 2 0,·

题目解答
答案

解析
步骤 1:求常数a
根据概率密度函数的性质,整个定义域上的积分应等于1。因此,我们有:
$$
\int_{-\infty}^{\infty} f(x) \, dx = 1
$$
将给定的概率密度函数代入,得到:
$$
\int_{0}^{1} x \, dx + \int_{1}^{2} (a-x) \, dx = 1
$$
计算这两个积分,得到:
$$
\left[ \frac{1}{2}x^2 \right]_{0}^{1} + \left[ ax - \frac{1}{2}x^2 \right]_{1}^{2} = 1
$$
$$
\frac{1}{2} + \left( 2a - 2 - a + \frac{1}{2} \right) = 1
$$
$$
\frac{1}{2} + a - \frac{3}{2} = 1
$$
$$
a - 1 = 1
$$
$$
a = 2
$$
步骤 2:求X的分布函数F(x)
分布函数F(x)定义为:
$$
F(x) = \int_{-\infty}^{x} f(t) \, dt
$$
根据概率密度函数f(x)的定义,我们分段求解F(x):
- 当$x < 0$时,$F(x) = 0$
- 当$0 \leq x < 1$时,$F(x) = \int_{0}^{x} t \, dt = \frac{1}{2}x^2$
- 当$1 \leq x \leq 2$时,$F(x) = \int_{0}^{1} t \, dt + \int_{1}^{x} (2-t) \, dt = \frac{1}{2} + \left[ 2t - \frac{1}{2}t^2 \right]_{1}^{x} = \frac{1}{2} + 2x - \frac{1}{2}x^2 - 1 = 2x - \frac{1}{2}x^2 - \frac{1}{2}$
- 当$x > 2$时,$F(x) = 1$
步骤 3:求$P\{ \frac{3}{4} < X < \frac{3}{2} \}$
根据分布函数F(x),我们有:
$$
P\{ \frac{3}{4} < X < \frac{3}{2} \} = F\left( \frac{3}{2} \right) - F\left( \frac{3}{4} \right)
$$
代入F(x)的表达式,得到:
$$
F\left( \frac{3}{2} \right) = 2 \cdot \frac{3}{2} - \frac{1}{2} \left( \frac{3}{2} \right)^2 - \frac{1}{2} = 3 - \frac{9}{8} - \frac{1}{2} = \frac{19}{8}
$$
$$
F\left( \frac{3}{4} \right) = \frac{1}{2} \left( \frac{3}{4} \right)^2 = \frac{9}{32}
$$
因此:
$$
P\{ \frac{3}{4} < X < \frac{3}{2} \} = \frac{19}{8} - \frac{9}{32} = \frac{76}{32} - \frac{9}{32} = \frac{67}{32}
$$
根据概率密度函数的性质,整个定义域上的积分应等于1。因此,我们有:
$$
\int_{-\infty}^{\infty} f(x) \, dx = 1
$$
将给定的概率密度函数代入,得到:
$$
\int_{0}^{1} x \, dx + \int_{1}^{2} (a-x) \, dx = 1
$$
计算这两个积分,得到:
$$
\left[ \frac{1}{2}x^2 \right]_{0}^{1} + \left[ ax - \frac{1}{2}x^2 \right]_{1}^{2} = 1
$$
$$
\frac{1}{2} + \left( 2a - 2 - a + \frac{1}{2} \right) = 1
$$
$$
\frac{1}{2} + a - \frac{3}{2} = 1
$$
$$
a - 1 = 1
$$
$$
a = 2
$$
步骤 2:求X的分布函数F(x)
分布函数F(x)定义为:
$$
F(x) = \int_{-\infty}^{x} f(t) \, dt
$$
根据概率密度函数f(x)的定义,我们分段求解F(x):
- 当$x < 0$时,$F(x) = 0$
- 当$0 \leq x < 1$时,$F(x) = \int_{0}^{x} t \, dt = \frac{1}{2}x^2$
- 当$1 \leq x \leq 2$时,$F(x) = \int_{0}^{1} t \, dt + \int_{1}^{x} (2-t) \, dt = \frac{1}{2} + \left[ 2t - \frac{1}{2}t^2 \right]_{1}^{x} = \frac{1}{2} + 2x - \frac{1}{2}x^2 - 1 = 2x - \frac{1}{2}x^2 - \frac{1}{2}$
- 当$x > 2$时,$F(x) = 1$
步骤 3:求$P\{ \frac{3}{4} < X < \frac{3}{2} \}$
根据分布函数F(x),我们有:
$$
P\{ \frac{3}{4} < X < \frac{3}{2} \} = F\left( \frac{3}{2} \right) - F\left( \frac{3}{4} \right)
$$
代入F(x)的表达式,得到:
$$
F\left( \frac{3}{2} \right) = 2 \cdot \frac{3}{2} - \frac{1}{2} \left( \frac{3}{2} \right)^2 - \frac{1}{2} = 3 - \frac{9}{8} - \frac{1}{2} = \frac{19}{8}
$$
$$
F\left( \frac{3}{4} \right) = \frac{1}{2} \left( \frac{3}{4} \right)^2 = \frac{9}{32}
$$
因此:
$$
P\{ \frac{3}{4} < X < \frac{3}{2} \} = \frac{19}{8} - \frac{9}{32} = \frac{76}{32} - \frac{9}{32} = \frac{67}{32}
$$