题目
6.设mE<∞,f_{n)(x)}为a.e.有限可测函数列,证明:lim_(ntoinfty)int_(E)(|f_(n)(x)|)/(1+|f_(n)(x)|)dx=0的充要条件是f_(n)Rightarrow0.
6.设mE<∞,$\{f_{n}(x)\}$为a.e.有限可测函数列,证明:
$\lim_{n\to\infty}\int_{E}\frac{|f_{n}(x)|}{1+|f_{n}(x)|}dx=0$
的充要条件是$f_{n}\Rightarrow0.$
题目解答
答案
**充分性:**
若 $f_n \Rightarrow 0$,则对任意 $\delta > 0$,
\[
\lim_{n \to \infty} mE[|f_n| \ge \delta] = 0.
\]
由函数 $g(x) = \frac{|f_n(x)|}{1+|f_n(x)|}$ 的单调性,
\[
E\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] \subset E[|f_n| \ge \delta],
\]
故
\[
\lim_{n \to \infty} mE\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] = 0.
\]
由勒贝格控制收敛定理($0 \le g(x) < 1$ 且 $mE < \infty$),
\[
\lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0.
\]
**必要性:**
若
\[
\lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0,
\]
则对任意 $\delta > 0$,
\[
\int_E \frac{|f_n|}{1+|f_n|} \, dx \ge \frac{\delta}{1+\delta} mE[|f_n| \ge \delta],
\]
取极限得
\[
\lim_{n \to \infty} mE[|f_n| \ge \delta] = 0,
\]
即 $f_n \Rightarrow 0$。
**答案:**
\[
\boxed{\lim_{n \to \infty} \int_E \frac{|f_n(x)|}{1+|f_n(x)|} \, dx = 0 \text{ 的充要条件是 } f_n \Rightarrow 0.}
\]
解析
步骤 1:充分性证明
若 $f_n \Rightarrow 0$,则对任意 $\delta > 0$, \[ \lim_{n \to \infty} mE[|f_n| \ge \delta] = 0. \] 由函数 $g(x) = \frac{|f_n(x)|}{1+|f_n(x)|}$ 的单调性, \[ E\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] \subset E[|f_n| \ge \delta], \] 故 \[ \lim_{n \to \infty} mE\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] = 0. \] 由勒贝格控制收敛定理($0 \le g(x) < 1$ 且 $mE < \infty$), \[ \lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0. \]
步骤 2:必要性证明
若 \[ \lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0, \] 则对任意 $\delta > 0$, \[ \int_E \frac{|f_n|}{1+|f_n|} \, dx \ge \frac{\delta}{1+\delta} mE[|f_n| \ge \delta], \] 取极限得 \[ \lim_{n \to \infty} mE[|f_n| \ge \delta] = 0, \] 即 $f_n \Rightarrow 0$。
若 $f_n \Rightarrow 0$,则对任意 $\delta > 0$, \[ \lim_{n \to \infty} mE[|f_n| \ge \delta] = 0. \] 由函数 $g(x) = \frac{|f_n(x)|}{1+|f_n(x)|}$ 的单调性, \[ E\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] \subset E[|f_n| \ge \delta], \] 故 \[ \lim_{n \to \infty} mE\left[\frac{|f_n|}{1+|f_n|} \ge \frac{\delta}{1+\delta}\right] = 0. \] 由勒贝格控制收敛定理($0 \le g(x) < 1$ 且 $mE < \infty$), \[ \lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0. \]
步骤 2:必要性证明
若 \[ \lim_{n \to \infty} \int_E \frac{|f_n|}{1+|f_n|} \, dx = 0, \] 则对任意 $\delta > 0$, \[ \int_E \frac{|f_n|}{1+|f_n|} \, dx \ge \frac{\delta}{1+\delta} mE[|f_n| \ge \delta], \] 取极限得 \[ \lim_{n \to \infty} mE[|f_n| \ge \delta] = 0, \] 即 $f_n \Rightarrow 0$。