题目
[2023年真题]设连续函数f(x)满足: f(x+2)-f(x)=x,int_(0)^2f(x)dx=0,则 int_(1)^3f(x)dx=
[2023年真题]设连续函数f(x)满足: f(x+2)-f(x)=x,$\int_{0}^{2}f(x)dx=0$,则 $\int_{1}^{3}f(x)dx=$
题目解答
答案
将积分区间分解并利用条件: $\int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx.$ 由 $ f(x+2) = f(x) + x $,令 $ u = x - 2 $,则 $\int_{2}^{3} f(x) \, dx = \int_{0}^{1} f(u+2) \, du = \int_{0}^{1} (f(u) + u) \, du = \int_{0}^{1} f(u) \, du + \frac{1}{2}.$ 由 $ \int_{0}^{2} f(x) \, dx = 0 $,得 $\int_{1}^{2} f(x) \, dx = -\int_{0}^{1} f(x) \, dx.$ 代入得 $\int_{1}^{3} f(x) \, dx = -\int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \frac{1}{2} = \frac{1}{2}.$ 答案: $\boxed{\frac{1}{2}}$
解析
本题主要考查定积分的计算以及函数关系式的运用。解题的关键思路是通过对积分区间进行拆分,再利用已知的函数关系式$f(x + 2) - f(x) = x$对积分进行变换,最后结合已知的定积分$\int_{0}^{2}f(x)dx = 0$来求解$\int_{1}^{3}f(x)dx$。
- 拆分积分区间:
根据定积分的可加性,将$\int_{1}^{3}f(x)dx$拆分为$\int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx$。 - 对$\int_{2}^{3} f(x) \, dx$进行变换:
已知$f(x + 2) = f(x) + x$,令$u = x - 2$,则$x = u + 2$,$dx = du$。
当$x = 2$时,$u = 2 - 2 = 0$;当$x = 3$时,$u = 3 - 2 = 1$。
所以$\int_{2}^{3} f(x) \, dx = \int_{0}^{1} f(u + 2) \, du$。
将$f(u + 2) = f(u) + u$代入上式可得:
$\int_{0}^{1} f(u + 2) \, du = \int_{0}^{1} (f(u) + u) \, du$
根据定积分的可加性,$\int_{0}^{1} (f(u) + u) \, du = \int_{0}^{1} f(u) \, du + \int_{0}^{1} u \, du$。
计算$\int_{0}^{1} u \, du$,根据定积分公式$\int x^n dx = \frac{1}{n + 1}x^{n + 1} + C$($n\neq -1$)可得:
$\int_{0}^{1} u \, du = \left[\frac{1}{2}u^2\right]_{0}^{1} = \frac{1}{2}\times 1^2 - \frac{1}{2}\times 0^2 = \frac{1}{2}$
所以$\int_{2}^{3} f(x) \, dx = \int_{0}^{1} f(u) \, du + \frac{1}{2}$。 - 对$\int_{1}^{2} f(x) \, dx$进行变换:
已知$\int_{0}^{2} f(x) \, dx = 0$,根据定积分的可加性$\int_{0}^{2} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx$,可得:
$\int_{1}^{2} f(x) \, dx = -\int_{0}^{1} f(x) \, dx$ - 计算$\int_{1}^{3} f(x) \, dx$:
将$\int_{1}^{2} f(x) \, dx = -\int_{0}^{1} f(x) \, dx$和$\int_{2}^{3} f(x) \, dx = \int_{0}^{1} f(u) \, du + \frac{1}{2}$代入$\int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx$可得:
$\int_{1}^{3} f(x) \, dx = -\int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \frac{1}{2} = \frac{1}{2}$