已知双曲线C:x^2-y^2=m(m gt 0),点P_(1)(5,4)在C上,k为常数,0 lt k lt 1,按照如下方式依次构造点P_(n)(n=2,3,... ),过P_(n-1)斜率为k的直线与C的左支交于点Q_(n-1),令P_(n)为Q_(n-1)关于y轴的对称点,记P_(n)的坐标为(x_(n),y_(n)).(1)若k=(1)/(2),求x_(2),y_(2);(2)证明:数列x_{n)-y_(n)}是公比为(1+k)/(1-k)的等比数列;(3)设S_(n)为triangle P_(n)P_(n+1)P_(n+2)的面积,证明:对任意的正整数n,S_(n)=S_(n+1).
已知双曲线$C:x^{2}-y^{2}=m\left(m \gt 0\right)$,点$P_{1}(5,4)$在$C$上,$k$为常数,$0 \lt k \lt 1$,按照如下方式依次构造点$P_{n}(n=2,3,\cdots )$,过$P_{n-1}$斜率为$k$的直线与$C$的左支交于点$Q_{n-1}$,令$P_{n}$为$Q_{n-1}$关于$y$轴的对称点,记$P_{n}$的坐标为$(x_{n}$,$y_{n})$.
$(1)$若$k=\frac{1}{2}$,求$x_{2}$,$y_{2}$;
$(2)$证明:数列$\{x_{n}-y_{n}\}$是公比为$\frac{1+k}{1-k}$的等比数列;
$(3)$设$S_{n}$为$\triangle P_{n}P_{n+1}P_{n+2}$的面积,证明:对任意的正整数$n$,$S_{n}=S_{n+1}$.
题目解答
答案
$\left(1\right)\because P_{1}(5,4)$在$C$上,
$\therefore 25-16=m$,解得$m=9$,
过$P\left(5,4\right)$且斜率为$k=\frac{1}{2}$的直线方程为$y-4=\frac{1}{2}(x-5)$,即$x-2y+3=0$,
联立$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=9}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$,
故$Q_{1}(-3,0)$,$P_{2}(3,0)$,
过$P_{n-1}$斜率为$k$的直线与$C$的左支交于点$Q_{n-1}$,令$P_{n}$为$Q_{n-1}$关于$y$轴的对称点,
所以$x_{2}=3$,$y_{2}=0$;
$(2)$证明:$\because P_{n}(x_{n}$,$y_{n})$关于$y$轴的对称点是$Q_{n-1}(-x_{n}$,$y_{n})$,
$P_{n-1}(x_{n-1}$,$y_{n-1})$,$P_{n-1}$,$Q_{n-1}$都在同一条斜率为$k$的直线上,$x_{n-1}\neq -x_{n}$;
则$\frac{y_n-y_{n-1}}{-x_n-x_{n-1}}=k$,
$\because P_{n-1}$,$Q_{n-1}$都在双曲线上,
$\therefore \left\{\begin{array}{l}{{x}_{n}^{2}-{y}_{n}^{2}=9}\\{{x}_{n-1}^{2}-{y}_{n-1}^{2}=9}\end{array}\right.$,两式相减可得,$(x_{n}-x_{n-1})(x_{n}+x_{n-1})=(y_{n}-y_{n-1})(y_{n}+y_{n-1})$,
而$y_{n}-y_{n-1}=-k(x_{n}+x_{n-1})$①,$x_{n}-x_{n-1}=-k(y_{n}+y_{n-1})$②,
则②$-$①可得,$x_{n}-y_{n}-(x_{n-1}-y_{n-1})=k(x_{n}-y_{n})+k(x_{n-1}-y_{n-1})$,
则$\left(1-k\right)(x_{n}-y_{n})=\left(1+k\right)(x_{n-1}-y_{n-1})$,
$\therefore \frac{x_n-y_n}{x_{n-1}-y_{n-1}}=\frac{1+k}{1-k}$,
故数列$\{x_{n}-y_{n}\}$是公比为$\frac{1+k}{1-k}$的等比数列;
$(3)$证明:要证:$S_{n}=S_{n+1}$,只需先尝试$P_{n+1}P_{n+2}$∥$P_{n}P_{n+3}$,
即先证${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,
记$t=\frac{1+k}{1-k}$,
$0 \lt k \lt 1$,
则$t \gt 1$,
$x_n-y_n=(x_1-y_1)(\frac{1+k}{1-k})^{n-1}=t^{n-1}$,
而$x_n^2-y_n^2=9$,
$\therefore x_n+y_n=9t^{1-n}$,
$\therefore y_{n}=\frac{1}{2}(-t^{n-1}+9t^{1-n})$,
$\therefore \frac{1}{{k}_{{P}_{n+1}{P}_{n+2}}}=\frac{x_{n+2}-x_{n+1}}{y_{n+2}-y_{n+1}}=\frac{y_{n+2}+t^{n+1}-y_{n+1}-t^{n}}{y_{n+2}-y_{n+1}}=1+\frac{2t^{n}(t-1)}{(-t^{n+1}9t^{-1-n})-(-t^{n}+9t^{-n})}=1+\frac{2t^{n}(t-1)}{(-9t^{-1-n}-t^{n})(t-1)}=1-\frac{2t^{n}}{9t^{-1-n}+t^{n}}$,
$\therefore \frac{1}{{k}_{{P}_{n}{P}_{n+3}}}=\frac{y_{n+3}+t^{n+2}-y_{n}-t^{n-1}}{y_{n+3}-y_{n}}=1+\frac{2t^{n-1}(t^{3}-1)}{(-t^{n+2}+9t^{-2-n})-(-t^{n-1}+9t^{1-n})}=1+\frac{2t^{n-1}(t^{3}-1)}{(-9t^{-2-n}-t^{n-1})(t^{3}-1)}=1-\frac{2t^{n-1}}{9t^{-2-n}+t^{n-1}}=1-\frac{2t^{n}}{9t^{-1-n}+t^{n}}$,
$\therefore {k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,
$\therefore P_{n+1}P_{n+2}$∥$P_{n}P_{n+3}$,
$\therefore S_{n}=S_{n+1}$.
解析
由于点$P_{1}(5,4)$在双曲线$C$上,代入$C$的方程$x^{2}-y^{2}=m$,得到$5^{2}-4^{2}=m$,解得$m=9$。
步骤 2:求$x_{2}$,$y_{2}$
当$k=\frac{1}{2}$时,过$P_{1}(5,4)$斜率为$k$的直线方程为$y-4=\frac{1}{2}(x-5)$,即$x-2y+3=0$。联立$x^{2}-y^{2}=9$和$x-2y+3=0$,解得$Q_{1}(-3,0)$,$P_{2}(3,0)$,所以$x_{2}=3$,$y_{2}=0$。
步骤 3:证明数列$\{x_{n}-y_{n}\}$是等比数列
由$P_{n}(x_{n}$,$y_{n})$关于$y$轴的对称点是$Q_{n-1}(-x_{n}$,$y_{n})$,$P_{n-1}(x_{n-1}$,$y_{n-1})$,$P_{n-1}$,$Q_{n-1}$都在同一条斜率为$k$的直线上,$x_{n-1}\neq -x_{n}$,可得$\frac{y_n-y_{n-1}}{-x_n-x_{n-1}}=k$。利用$P_{n-1}$,$Q_{n-1}$都在双曲线上,可得$(x_{n}-x_{n-1})(x_{n}+x_{n-1})=(y_{n}-y_{n-1})(y_{n}+y_{n-1})$,进而证明数列$\{x_{n}-y_{n}\}$是公比为$\frac{1+k}{1-k}$的等比数列。
步骤 4:证明$S_{n}=S_{n+1}$
要证明$S_{n}=S_{n+1}$,只需证明$P_{n+1}P_{n+2}$∥$P_{n}P_{n+3}$,即证明${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$。通过计算$\frac{1}{{k}_{{P}_{n+1}{P}_{n+2}}}$和$\frac{1}{{k}_{{P}_{n}{P}_{n+3}}}$,可以证明${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,从而证明$S_{n}=S_{n+1}$。