题目
2.21 设连续随机变量X的概率密度为-|||-f(x)= ) c+x,-1leqslant xlt 0 c-x,0leqslant xleqslant 1; 0,|x|gt 1. ;(3)X的分布函数F(x).

题目解答
答案

解析
步骤 1:求常数c
根据概率密度函数的性质,整个定义域上的积分应等于1。因此,我们有:
$$
\int_{-1}^{1} f(x) dx = 1
$$
将给定的概率密度函数代入,得到:
$$
\int_{-1}^{0} (c+x) dx + \int_{0}^{1} (c-x) dx = 1
$$
计算两个积分:
$$
\int_{-1}^{0} (c+x) dx = \left[ cx + \frac{x^2}{2} \right]_{-1}^{0} = c(0) + \frac{0^2}{2} - \left( c(-1) + \frac{(-1)^2}{2} \right) = c + \frac{1}{2}
$$
$$
\int_{0}^{1} (c-x) dx = \left[ cx - \frac{x^2}{2} \right]_{0}^{1} = c(1) - \frac{1^2}{2} - \left( c(0) - \frac{0^2}{2} \right) = c - \frac{1}{2}
$$
将两个积分结果相加,得到:
$$
c + \frac{1}{2} + c - \frac{1}{2} = 1
$$
$$
2c = 1
$$
$$
c = \frac{1}{2}
$$
步骤 2:求概率 $P\{ |x|\leqslant 0.5\}$
根据概率密度函数,我们有:
$$
P\{ |x|\leqslant 0.5\} = \int_{-0.5}^{0.5} f(x) dx
$$
将给定的概率密度函数代入,得到:
$$
P\{ |x|\leqslant 0.5\} = \int_{-0.5}^{0} \left( \frac{1}{2} + x \right) dx + \int_{0}^{0.5} \left( \frac{1}{2} - x \right) dx
$$
计算两个积分:
$$
\int_{-0.5}^{0} \left( \frac{1}{2} + x \right) dx = \left[ \frac{1}{2}x + \frac{x^2}{2} \right]_{-0.5}^{0} = \frac{1}{2}(0) + \frac{0^2}{2} - \left( \frac{1}{2}(-0.5) + \frac{(-0.5)^2}{2} \right) = \frac{1}{4}
$$
$$
\int_{0}^{0.5} \left( \frac{1}{2} - x \right) dx = \left[ \frac{1}{2}x - \frac{x^2}{2} \right]_{0}^{0.5} = \frac{1}{2}(0.5) - \frac{0.5^2}{2} - \left( \frac{1}{2}(0) - \frac{0^2}{2} \right) = \frac{1}{4}
$$
将两个积分结果相加,得到:
$$
P\{ |x|\leqslant 0.5\} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}
$$
步骤 3:求X的分布函数F(x)
根据概率密度函数,我们有:
$$
F(x) = \int_{-\infty}^{x} f(t) dt
$$
将给定的概率密度函数代入,得到:
$$
F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} \left\{ \begin{matrix} \frac{1}{2} + t, -1 \leqslant t < 0 \\ \frac{1}{2} - t, 0 \leqslant t \leqslant 1 \\ 0, |t| > 1 \end{matrix} \right. dt
$$
根据x的取值范围,我们分段讨论:
- 当 $x < -1$ 时,$F(x) = 0$
- 当 $-1 \leqslant x < 0$ 时,$F(x) = \int_{-1}^{x} \left( \frac{1}{2} + t \right) dt = \frac{1}{2}(x + 1) + \frac{x^2}{2} - \frac{1}{2}$
- 当 $0 \leqslant x \leqslant 1$ 时,$F(x) = \int_{-1}^{0} \left( \frac{1}{2} + t \right) dt + \int_{0}^{x} \left( \frac{1}{2} - t \right) dt = \frac{1}{2} + \frac{x}{2} - \frac{x^2}{2}$
- 当 $x > 1$ 时,$F(x) = 1$
根据概率密度函数的性质,整个定义域上的积分应等于1。因此,我们有:
$$
\int_{-1}^{1} f(x) dx = 1
$$
将给定的概率密度函数代入,得到:
$$
\int_{-1}^{0} (c+x) dx + \int_{0}^{1} (c-x) dx = 1
$$
计算两个积分:
$$
\int_{-1}^{0} (c+x) dx = \left[ cx + \frac{x^2}{2} \right]_{-1}^{0} = c(0) + \frac{0^2}{2} - \left( c(-1) + \frac{(-1)^2}{2} \right) = c + \frac{1}{2}
$$
$$
\int_{0}^{1} (c-x) dx = \left[ cx - \frac{x^2}{2} \right]_{0}^{1} = c(1) - \frac{1^2}{2} - \left( c(0) - \frac{0^2}{2} \right) = c - \frac{1}{2}
$$
将两个积分结果相加,得到:
$$
c + \frac{1}{2} + c - \frac{1}{2} = 1
$$
$$
2c = 1
$$
$$
c = \frac{1}{2}
$$
步骤 2:求概率 $P\{ |x|\leqslant 0.5\}$
根据概率密度函数,我们有:
$$
P\{ |x|\leqslant 0.5\} = \int_{-0.5}^{0.5} f(x) dx
$$
将给定的概率密度函数代入,得到:
$$
P\{ |x|\leqslant 0.5\} = \int_{-0.5}^{0} \left( \frac{1}{2} + x \right) dx + \int_{0}^{0.5} \left( \frac{1}{2} - x \right) dx
$$
计算两个积分:
$$
\int_{-0.5}^{0} \left( \frac{1}{2} + x \right) dx = \left[ \frac{1}{2}x + \frac{x^2}{2} \right]_{-0.5}^{0} = \frac{1}{2}(0) + \frac{0^2}{2} - \left( \frac{1}{2}(-0.5) + \frac{(-0.5)^2}{2} \right) = \frac{1}{4}
$$
$$
\int_{0}^{0.5} \left( \frac{1}{2} - x \right) dx = \left[ \frac{1}{2}x - \frac{x^2}{2} \right]_{0}^{0.5} = \frac{1}{2}(0.5) - \frac{0.5^2}{2} - \left( \frac{1}{2}(0) - \frac{0^2}{2} \right) = \frac{1}{4}
$$
将两个积分结果相加,得到:
$$
P\{ |x|\leqslant 0.5\} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}
$$
步骤 3:求X的分布函数F(x)
根据概率密度函数,我们有:
$$
F(x) = \int_{-\infty}^{x} f(t) dt
$$
将给定的概率密度函数代入,得到:
$$
F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} \left\{ \begin{matrix} \frac{1}{2} + t, -1 \leqslant t < 0 \\ \frac{1}{2} - t, 0 \leqslant t \leqslant 1 \\ 0, |t| > 1 \end{matrix} \right. dt
$$
根据x的取值范围,我们分段讨论:
- 当 $x < -1$ 时,$F(x) = 0$
- 当 $-1 \leqslant x < 0$ 时,$F(x) = \int_{-1}^{x} \left( \frac{1}{2} + t \right) dt = \frac{1}{2}(x + 1) + \frac{x^2}{2} - \frac{1}{2}$
- 当 $0 \leqslant x \leqslant 1$ 时,$F(x) = \int_{-1}^{0} \left( \frac{1}{2} + t \right) dt + \int_{0}^{x} \left( \frac{1}{2} - t \right) dt = \frac{1}{2} + \frac{x}{2} - \frac{x^2}{2}$
- 当 $x > 1$ 时,$F(x) = 1$