设(X,Y)只可能取(0,0), (-1,1), (-1,(1)/(3)), (2,0)四组值,且取这些值的概率依次为(1)/(6), (1)/(3), (1)/(12), (5)/(12),试求关于X,Y的边缘分布律,判断X,Y的独立性,并求出E(XY), D(X)
设$(X,Y)$只可能取$(0,0)$, $(-1,1)$, $(-1,\frac{1}{3})$, $(2,0)$四组值,且取这些值的概率依次为$\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{12}$, $\frac{5}{12}$,试求关于X,Y的边缘分布律,判断X,Y的独立性,并求出$E(XY)$, $D(X)$
题目解答
答案
-
边缘分布律
- $X$ 的边缘分布:
$P(X=0) = \frac{1}{6}$,$P(X=-1) = \frac{5}{12}$,$P(X=2) = \frac{5}{12}$ - $Y$ 的边缘分布:
$P(Y=0) = \frac{7}{12}$,$P(Y=1) = \frac{1}{3}$,$P(Y=\frac{1}{3}) = \frac{1}{12}$
- $X$ 的边缘分布:
-
独立性
由于 $P(X=0, Y=0) = \frac{1}{6} \neq P(X=0)P(Y=0) = \frac{7}{72}$,故 $X$ 和 $Y$ 不独立。 -
期望 $E(XY)$
$E(XY) = 0 \times 0 \times \frac{1}{6} + (-1) \times 1 \times \frac{1}{3} + (-1) \times \frac{1}{3} \times \frac{1}{12} + 2 \times 0 \times \frac{5}{12} = -\frac{13}{36}$ -
方差 $D(X)$
$E(X) = 0 \times \frac{1}{6} + (-1) \times \frac{5}{12} + 2 \times \frac{5}{12} = \frac{5}{12}$
$E(X^2) = 0^2 \times \frac{1}{6} + (-1)^2 \times \frac{5}{12} + 2^2 \times \frac{5}{12} = \frac{25}{12}$
$D(X) = E(X^2) - [E(X)]^2 = \frac{25}{12} - \left(\frac{5}{12}\right)^2 = \frac{275}{144}$
答案:
$\boxed{\begin{array}{ccc}\text{X的边缘分布:} & P(X=0)=\frac{1}{6}, & P(X=-1)=\frac{5}{12}, & P(X=2)=\frac{5}{12} \\\text{Y的边缘分布:} & P(Y=0)=\frac{7}{12}, & P(Y=1)=\frac{1}{3}, & P(Y=\frac{1}{3})=\frac{1}{12} \\\text{独立性:} & \text{不独立} \\E(XY) = & -\frac{13}{36} \\D(X) = & \frac{275}{144}\end{array}}$
解析
本题主要考查二维离散型随机变量的边缘分布律、独立性判断、期望和方差的计算。解题思路如下:
- 求边缘分布律:
- 对于二维离散型随机变量$(X,Y)$,$X$的边缘分布律$P(X = x_i)$是通过对$Y$的所有可能取值对应的联合概率求和得到,即$P(X = x_i)=\sum_{j}P(X = x_i,Y = y_j)$;同理,$Y$的边缘分布律$P(Y = y_j)$是通过对$X$的所有可能取值对应的联合概率求和得到,即$P(Y = y_j)=\sum_{i}P(X = x_i,Y = y_j)$。
- 判断独立性:
- 若对于二维离散型随机变量$(X,Y)$的所有可能取值$(x_i,y_j)$,都有$P(X = x_i,Y = y_j)=P(X = x_i)P(Y = y_j)$,则称$X$和$Y$相互独立;否则,$X$和$Y$不独立。
- 求$E(XY)$:
- 根据二维离散型随机变量函数的期望公式$E(g(X,Y))=\sum_{i}\sum_{j}g(x_i,y_j)P(X = x_i,Y = y_j)$,对于$g(X,Y)=XY$,则$E(XY)=\sum_{i}\sum_{j}x_iy_jP(X = x_i,Y = y_j)$。
- 求$D(X)$:
- 首先根据期望公式$E(X)=\sum_{i}x_iP(X = x_i)$求出$E(X)$;再根据$E(X^2)=\sum_{i}x_i^2P(X = x_i)$求出$E(X^2)$;最后根据方差公式$D(X)=E(X^2)-[E(X)]^2$求出$D(X)$。
下面进行详细计算:
- 求$X$的边缘分布律律:
- $P(X = 0)=P(X = 0,Y = 0)=\frac{1}{6}$
- $P(X=-1)=P(X = -1,Y = 1)+P(X = -1,Y=\frac{1}{3})=\frac{1}{3}+\frac{1}{12}=\frac{4 + 1}{12}=\frac{5}{12}$
- $P(X = 2)=P(X = 2,Y = 0)=\frac{5}{12}$
- 求$Y$的边缘分布:
- $P(Y = 0)=P(X = 0,Y = 0)+P(X = 2,Y = 0)=\frac{1}{6}+\frac{5}{12}=\frac{2 + 5}{12}=\frac{7}{12}$
- $P(Y = 1)=P(X = -1,Y = 1)=\frac{1}{3}$
- $P(Y=\frac{1}{3})=P(X = -1,Y=\frac{1}{3})=\frac{1}{12}$
- 判断独立性:
- 计算$P(X = 0)P(Y = 0)=\frac{1}{6}\times\frac{7}{12}=\frac{7}{72}$,而$P(X = 0,Y = 0)=\frac{1}{6}$,因为$\frac{1}{6}\neq\frac{7}{72}$,所以$X$和$Y$不独立。
- 求$E(XY)$:
- $E(XY)=0\times0\times\frac{1}{6}+(-1)\times1\times\frac{1}{3}+(-1)\times\frac{1}{3}\times\frac{1}{12}+2\times0\times\frac{5}{12}$
- $=0-\frac{1}{3}-\frac{1}{36}+0=-\frac{12 + 1}{36}=-\frac{13}{36}$
- 求$D(X)$:
- 先求$E(X)$:
- $E(X)=0\times\frac{1}{6}+(-1)\times\frac{5}{12}+2\times\frac{5}{12}=0-\frac{5}{12}+\frac{10}{12}=\frac{5}{12}$
- 再求$E(X^2)$:
- $E(X^2)=0^2\times\frac{1}{6}+(-1)^2\times\frac{5}{12}+2^2\times\frac{5}{12}=0+\frac{5}{12}+\frac{20}{1}=}=\frac{25}{12}$
- 最后求$D(X)$:
- $D(X)=E(X^2)-[E(X)]^2=\frac{25}{12}-(\frac{5}{12})^2=\frac{25}{12}-\frac{25}{144}=\frac{300 - 25}{144}=\frac{275}{144}$
- 先求$E(X)$: