题目
(4)int_((pi)/(4))^(pi)/(3)(x)/(sin^2)xdx;
(4)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{x}{\sin^{2}x}dx;$
题目解答
答案
为了求解定积分 $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2 x} \, dx$,我们可以使用分部积分法。分部积分法的公式是:
\[
\int u \, dv = uv - \int v \, du
\]
在这个问题中,我们可以选择 $u = x$ 和 $dv = \frac{1}{\sin^2 x} \, dx = \csc^2 x \, dx$。那么,$du = dx$ 和 $v = -\cot x$(因为 $\int \csc^2 x \, dx = -\cot x$)。
应用分部积分法,我们得到:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2 x} \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} x \csc^2 x \, dx = \left[ x (-\cot x) \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (-\cot x) \, dx
\]
简化后,我们有:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2 x} \, dx = \left[ -x \cot x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx
\]
首先,我们计算 $\left[ -x \cot x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$:
\[
\left[ -x \cot x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\frac{\pi}{3} \cot \frac{\pi}{3} - \left( -\frac{\pi}{4} \cot \frac{\pi}{4} \right) = -\frac{\pi}{3} \cdot \frac{1}{\sqrt{3}} + \frac{\pi}{4} \cdot 1 = -\frac{\pi}{3\sqrt{3}} + \frac{\pi}{4} = -\frac{\pi \sqrt{3}}{9} + \frac{\pi}{4}
\]
接下来,我们计算 $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx$:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos x}{\sin x} \, dx
\]
令 $u = \sin x$,则 $du = \cos x \, dx$。当 $x = \frac{\pi}{4}$ 时,$u = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$;当 $x = \frac{\pi}{3}$ 时,$u = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$。因此,积分变为:
\[
\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{u} \, du = \left[ \ln |u| \right]_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} = \ln \frac{\sqrt{3}}{2} - \ln \frac{\sqrt{2}}{2} = \ln \left( \frac{\sqrt{3}}{2} \cdot \frac{2}{\sqrt{2}} \right) = \ln \sqrt{\frac{3}{2}} = \ln \left( \frac{\sqrt{6}}{2} \right) = \frac{1}{2} \ln \frac{3}{2}
\]
将两部分结果相加,我们得到:
\[
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2 x} \, dx = -\frac{\pi \sqrt{3}}{9} + \frac{\pi}{4} + \frac{1}{2} \ln \frac{3}{2}
\]
因此,最终答案是:
\[
\boxed{\frac{\pi}{4} - \frac{\pi \sqrt{3}}{9} + \frac{1}{2} \ln \frac{3}{2}}
\]