题目
已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N*,证明:(1)/((sqrt({1^2)+1))}+(1)/((sqrt({2^2)+2))}+…+(1)/((sqrt({n^2)+n))}>ln(n+1).
已知函数f(x)=xeax-ex.
(1)当a=1时,讨论f(x)的单调性;
(2)当x>0时,f(x)<-1,求a的取值范围;
(3)设n∈N*,证明:$\frac{1}{{\sqrt{{1^2}+1}}}$+$\frac{1}{{\sqrt{{2^2}+2}}}$+…+$\frac{1}{{\sqrt{{n^2}+n}}}$>ln(n+1).
(1)当a=1时,讨论f(x)的单调性;
(2)当x>0时,f(x)<-1,求a的取值范围;
(3)设n∈N*,证明:$\frac{1}{{\sqrt{{1^2}+1}}}$+$\frac{1}{{\sqrt{{2^2}+2}}}$+…+$\frac{1}{{\sqrt{{n^2}+n}}}$>ln(n+1).
题目解答
答案
解:(1)当a=1时,f(x)=xex-ex=ex(x-1),
f′(x)=ex(x-1)+ex=xex,
∵ex>0,
∴当x∈(0,+∞)时,f′(x)>0,f(x)单调递增;当x∈(-∞,0)时,f′(x)<0,f(x)单调递减.
(2)令g(x)=f(x)+1=xeax-ex+1(x>0),
∵f(x)<-1,f(x)+1<0,
∴g(x)<g(0)=0在x>0上恒成立,
又g′(x)=eax+xaeax-ex,
令h(x)=g′(x),则h′(x)=aeax+a(eax+axeax)-ex=a(2eax+axeax)-ex,
∴h′(0)=2a-1,
①当2a-1>0,即a>$\frac{1}{2}$,h′(0)=$\underset{lim}{x→0+}$$\frac{g′(x)-g′(0)}{x-0}$=$\underset{lim}{x→0+}$$\frac{g′(x)}{x}$>0,
∴∃x0>0,使得当x∈(0,x0),有$\frac{\;g′(x)}{x}$>0,∴g′(x)>0,
所以g(x)单调递增,g(x0)>g(0)=0,矛盾;
②当2a-1≤0,即a≤$\frac{1}{2}$,
g′(x)=eax+xaeax-ex=(1+ax)eax-ex,
若1+ax≤0,则g'(x)<0,
所以g(x)在[0,+∞)上单调递减,g(x)≤g(0)=0,符合题意.
若1+ax>0,则g′(x)=eax+xaeax-ex=eax+ln(1+ax)-ex≤${e}^{\frac{1}{2}x+ln(1+\frac{1}{2}x)}$-ex≤${e}^{\frac{1}{2}x+\frac{1}{2}x}-{e}^{x}$=0,
所以g(x)在[0,+∞)上单调递减,g(x)≤g(0)=0,符合题意.
综上所述,实数a的取值范围是a≤$\frac{1}{2}$.
(3)由(2)可知,当a=$\frac{1}{2}$时,f(x)=$x{e}^{\frac{1}{2}x}-{e}^{x}$<-1(x>0),
令x=ln(1+$\frac{1}{n}$)(n∈N*)得,$ln(1+\frac{1}{n})•{e}^{\frac{1}{2}ln(1+\frac{1}{n})}-{e}^{ln(1+\frac{1}{n})}$<-1,
整理得,$ln(1+\frac{1}{n})•\sqrt{1+\frac{1}{n}}-\frac{1}{n}<0$,
∴$\frac{\frac{1}{\;n}}{\sqrt{1+\frac{1}{n}}}$>ln(1+$\frac{1}{n}$),
∴$\frac{1}{\sqrt{{n}^{2}+n}}$>ln($\frac{n+1}{n}$),∴$\sum_{k=1}^{n}\frac{1}{\sqrt{{k}^{2}+k}}$>$\sum_{k=1}^{n}$ln($\frac{k+1}{k}$)=ln($\frac{2}{1}×\frac{3}{2}×...×\frac{n+1}{n}$)=ln(n+1),
即$\frac{1}{\sqrt{{1}^{2}+1}}$+$\frac{1}{\sqrt{{2}^{2}+2}}$+...+$\frac{1}{\sqrt{\;{n}^{2}+n}}$>ln(n+1).
f′(x)=ex(x-1)+ex=xex,
∵ex>0,
∴当x∈(0,+∞)时,f′(x)>0,f(x)单调递增;当x∈(-∞,0)时,f′(x)<0,f(x)单调递减.
(2)令g(x)=f(x)+1=xeax-ex+1(x>0),
∵f(x)<-1,f(x)+1<0,
∴g(x)<g(0)=0在x>0上恒成立,
又g′(x)=eax+xaeax-ex,
令h(x)=g′(x),则h′(x)=aeax+a(eax+axeax)-ex=a(2eax+axeax)-ex,
∴h′(0)=2a-1,
①当2a-1>0,即a>$\frac{1}{2}$,h′(0)=$\underset{lim}{x→0+}$$\frac{g′(x)-g′(0)}{x-0}$=$\underset{lim}{x→0+}$$\frac{g′(x)}{x}$>0,
∴∃x0>0,使得当x∈(0,x0),有$\frac{\;g′(x)}{x}$>0,∴g′(x)>0,
所以g(x)单调递增,g(x0)>g(0)=0,矛盾;
②当2a-1≤0,即a≤$\frac{1}{2}$,
g′(x)=eax+xaeax-ex=(1+ax)eax-ex,
若1+ax≤0,则g'(x)<0,
所以g(x)在[0,+∞)上单调递减,g(x)≤g(0)=0,符合题意.
若1+ax>0,则g′(x)=eax+xaeax-ex=eax+ln(1+ax)-ex≤${e}^{\frac{1}{2}x+ln(1+\frac{1}{2}x)}$-ex≤${e}^{\frac{1}{2}x+\frac{1}{2}x}-{e}^{x}$=0,
所以g(x)在[0,+∞)上单调递减,g(x)≤g(0)=0,符合题意.
综上所述,实数a的取值范围是a≤$\frac{1}{2}$.
(3)由(2)可知,当a=$\frac{1}{2}$时,f(x)=$x{e}^{\frac{1}{2}x}-{e}^{x}$<-1(x>0),
令x=ln(1+$\frac{1}{n}$)(n∈N*)得,$ln(1+\frac{1}{n})•{e}^{\frac{1}{2}ln(1+\frac{1}{n})}-{e}^{ln(1+\frac{1}{n})}$<-1,
整理得,$ln(1+\frac{1}{n})•\sqrt{1+\frac{1}{n}}-\frac{1}{n}<0$,
∴$\frac{\frac{1}{\;n}}{\sqrt{1+\frac{1}{n}}}$>ln(1+$\frac{1}{n}$),
∴$\frac{1}{\sqrt{{n}^{2}+n}}$>ln($\frac{n+1}{n}$),∴$\sum_{k=1}^{n}\frac{1}{\sqrt{{k}^{2}+k}}$>$\sum_{k=1}^{n}$ln($\frac{k+1}{k}$)=ln($\frac{2}{1}×\frac{3}{2}×...×\frac{n+1}{n}$)=ln(n+1),
即$\frac{1}{\sqrt{{1}^{2}+1}}$+$\frac{1}{\sqrt{{2}^{2}+2}}$+...+$\frac{1}{\sqrt{\;{n}^{2}+n}}$>ln(n+1).