题目
设(X1,X2,···,Xn)是取自总体 sim E(X) 的一个样本,X为样本均值,-|||-sqrt (ar(overline {X))}=dfrac (1)(n{lambda )^2}-|||-(sum _(i=1)^n({X)_(i)}^2)=dfrac (2n)({lambda )^2}-|||-证明:(1) (overline (X))=dfrac (1)(lambda ) (2) ;(3) .

题目解答
答案
本题考查指数分布的期望、方差性质以及样本均值和样本二阶矩的相关期望、方差的计算,






解析
步骤 1:回顾指数分布E(λ)的期望
已知总体 $X\sim E(X)$ ,对于指数分布,其期望 $E(X)=\dfrac {1}{\lambda }$.
步骤 2:求样本均值X的期望
样本均值 $\overline {X}=\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i}$ ,根据期望的线性性质,对于随机变 量$Y={a}_{1}{Y}_{1}+{a}_{2}{Y}_{2}+\cdots +{a}_{n}{Y}_{n}$ (ai为常数,Yi为随机变 量),有 $E(Y)={a}_{1}E({Y}_{1})+{a}_{2}E({Y}_{2})+\cdots +{a}_{n}E({Y}_{n})$ =则$E(\overline {X})=E(\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i})=\dfrac {1}{n}\sum _{i=1}^{n}E({X}_{i})$ ,又因为X4都服从 E(λ)分布,且 $E({X}_{i})=\dfrac {1}{\lambda }$ 所以 $E(\overline {X})=\dfrac {1}{n}\cdot n\cdot \dfrac {1}{\lambda }=\dfrac {1}{\lambda }$ .
步骤 3:回顾指数分布E(λ)的方差
对于指数分布 $X\sim E(X)$ 其方差 ${V}_{ar}(x)=\dfrac {1}{{\lambda }^{2}}$
步骤 4:求样本均值X的方差
根据样本均值的方差性质,若X1,X2,···,Xn是相互独立的随 机变量,且 $\overline {X}=\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i}$ ,则 $Var(\overline {X})=\dfrac {1}{{n}^{2}}\sum _{i=1}^{n}Var({X}_{i})$ -因为X;都服从E(λ)分布,且 ${V}_{ar({X}_{i})}=\dfrac {1}{{\lambda }^{2}}$ ,所以 $Var(\overline {X})=\dfrac {1}{{n}^{2}}\cdot n\cdot \dfrac {1}{{\lambda }^{2}}=\dfrac {1}{n{\lambda }^{2}}$ -
步骤 5:回顾随机变量方差与期望的关系
对于任意随机变量Y,有 $Var(Y)=E({Y}^{2})-{[ E(Y)] }^{2}$ ,移项 可得 $E({Y}^{2})={V}_{\arccos r}{(r)}^{2}+{[ E(Y)] }^{2}$
步骤 6:求 $E({{X}_{i}}^{2})$ 的值
对于 ${X}_{i}\sim E(X)$, 已知 $E({X}_{i})=\dfrac {1}{\lambda }$ ${V}_{ar({r}_{i})}=\dfrac {1}{{\lambda }^{2}}$ ,由上 述关系可得: $E({{X}_{j}}^{2})={V}_{ar}({X}_{i})+{[ E({X}_{i})] }^{2}=\dfrac {1}{{X}^{2}}+{(\dfrac {1}{\lambda })}^{2}=\dfrac {2}{{X}^{2}}$ -
步骤 7:求 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})$ 的值
再根据期望的线性性质 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})=\sum _{i=1}^{n}E({{X}_{i}}^{2})$ 又因为 $E({{X}_{8}}^{2})=\dfrac {2}{{\lambda }^{2}}$ 所以 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})=n\cdot \dfrac {2}{{\lambda }^{2}}=\dfrac {2n}{{\lambda }^{2}}$ .
已知总体 $X\sim E(X)$ ,对于指数分布,其期望 $E(X)=\dfrac {1}{\lambda }$.
步骤 2:求样本均值X的期望
样本均值 $\overline {X}=\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i}$ ,根据期望的线性性质,对于随机变 量$Y={a}_{1}{Y}_{1}+{a}_{2}{Y}_{2}+\cdots +{a}_{n}{Y}_{n}$ (ai为常数,Yi为随机变 量),有 $E(Y)={a}_{1}E({Y}_{1})+{a}_{2}E({Y}_{2})+\cdots +{a}_{n}E({Y}_{n})$ =则$E(\overline {X})=E(\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i})=\dfrac {1}{n}\sum _{i=1}^{n}E({X}_{i})$ ,又因为X4都服从 E(λ)分布,且 $E({X}_{i})=\dfrac {1}{\lambda }$ 所以 $E(\overline {X})=\dfrac {1}{n}\cdot n\cdot \dfrac {1}{\lambda }=\dfrac {1}{\lambda }$ .
步骤 3:回顾指数分布E(λ)的方差
对于指数分布 $X\sim E(X)$ 其方差 ${V}_{ar}(x)=\dfrac {1}{{\lambda }^{2}}$
步骤 4:求样本均值X的方差
根据样本均值的方差性质,若X1,X2,···,Xn是相互独立的随 机变量,且 $\overline {X}=\dfrac {1}{n}\sum _{i=1}^{n}{X}_{i}$ ,则 $Var(\overline {X})=\dfrac {1}{{n}^{2}}\sum _{i=1}^{n}Var({X}_{i})$ -因为X;都服从E(λ)分布,且 ${V}_{ar({X}_{i})}=\dfrac {1}{{\lambda }^{2}}$ ,所以 $Var(\overline {X})=\dfrac {1}{{n}^{2}}\cdot n\cdot \dfrac {1}{{\lambda }^{2}}=\dfrac {1}{n{\lambda }^{2}}$ -
步骤 5:回顾随机变量方差与期望的关系
对于任意随机变量Y,有 $Var(Y)=E({Y}^{2})-{[ E(Y)] }^{2}$ ,移项 可得 $E({Y}^{2})={V}_{\arccos r}{(r)}^{2}+{[ E(Y)] }^{2}$
步骤 6:求 $E({{X}_{i}}^{2})$ 的值
对于 ${X}_{i}\sim E(X)$, 已知 $E({X}_{i})=\dfrac {1}{\lambda }$ ${V}_{ar({r}_{i})}=\dfrac {1}{{\lambda }^{2}}$ ,由上 述关系可得: $E({{X}_{j}}^{2})={V}_{ar}({X}_{i})+{[ E({X}_{i})] }^{2}=\dfrac {1}{{X}^{2}}+{(\dfrac {1}{\lambda })}^{2}=\dfrac {2}{{X}^{2}}$ -
步骤 7:求 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})$ 的值
再根据期望的线性性质 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})=\sum _{i=1}^{n}E({{X}_{i}}^{2})$ 又因为 $E({{X}_{8}}^{2})=\dfrac {2}{{\lambda }^{2}}$ 所以 $E(\sum _{i=1}^{n}{{X}_{i}}^{2})=n\cdot \dfrac {2}{{\lambda }^{2}}=\dfrac {2n}{{\lambda }^{2}}$ .