题目
【题目】-|||-设总体X的概率密度为-|||-(x;theta )= ,0lt xlt theta dfrac {1)(2(1-theta )),theta leqslant xlt 1 .-|||-其中参数 theta (0lt theta lt 1) 未知.X1,X2,···,,__是来自总体X的简单随-|||-机样本,X是样本均值.-|||-(1)求参数θ的矩估计量θ;-|||-(2)判断4(x)^2是否为θ^2的无偏估计量,并说明理由.

题目解答
答案

解析
考察知识
矩估计量量的求解;无偏估计量的判断。
题目(1)解析
矩估计量的核心思路是:用样本矩估计总体矩,具体步骤如下:
- 计算总体一阶矩(期望)
总体X的概率密度为分段函数,积分区间分为$(0,\theta)$和$[theta,1)$:
$EX = \int_{0}^{\theta} x \cdot \frac{1}{2\theta}dx + \int_{\theta}^{1} x \cdot \frac{1}{2(1-\theta)}dx$
分别计算两个积分:- 第一个积分:$\int_{0}^{\theta} \frac{x}{2\theta}dx = \frac{1}{2\theta} \cdot \frac{\theta^2}{2} = \frac{\theta}{4}$
- 第二个积分:$\int_{\theta}^{1} \frac{x}{2(1-\theta)} = \frac{1}{2(1-\theta)} \cdot \left( \frac{1}{2} - \frac{\theta^2}{2} \right) = \frac{1 - \theta^2}{4(1-\theta)}$
合并得:
$EX = \frac{\theta}{4} + \frac{1 - \theta^2}{4(1-\theta)} = \frac{\theta(1-\theta) + 1 - \theta^2}{4(1-\theta)} = \frac{\theta + 1}{4}$
- 用样本均值估计期望
令$EX = \overline{X}$(样本均值),则:
$\frac{\theta + 1}{4} = \overline{X} \implies \hat{\theta} = 2\overline{X} - \frac{1}{2}$
题目(2)解析
无偏估计量的判断标准:估计量的期望等于被估计参数,即$E[4\overline{X}^2] = \theta^2$是否成立?
- 计算$E(4$\overline{X}$^2)
需先算$E\overline{X}^2$,利用公式$E\overline{X}^2 = D\overline{X} + (E\overline{X})^2$:- $D\overline{X\} = E(X^2) - (EX)^2$,先算$E(X^2)$:
$E(X^2) = \int_{0}^{\theta} x^2 \cdot \frac{1}{2\theta}dx + \int_{\theta}^{1} x^2 \cdot \frac{1}{2(1-\theta)}dx = \frac{\theta^2}{6} + \frac{1 - \theta^3}{6(1-\theta)} = \frac{2\theta^2 + \theta + 1}{6}$ - $D(X) = \frac{2\theta^2 + \theta + 1}{6} - \left(\frac{\theta + 1}{4}\right)^2 = \frac{4\theta^2 - 4\theta + 5}{48$
- $D\overline{X} = \frac{D(X)}{n}$,则:
$E\overline{X}^2 = \frac{4\theta^2 - 4\theta + 5}{48n} + \left(\frac{\theta + 1}{4}\right)^2$ - 显然$E\overline{X}^2 \neq \frac{\theta^2}{4}$(因含$\frac{1}{n}$项和交叉项),故$E[4\overline{X}^2] \neq \theta^2$。
- $D\overline{X\} = E(X^2) - (EX)^2$,先算$E(X^2)$: