经测量获得某弹簧振子振动周期 overrightarrow (T)=(0.7836+0.001)s ,弹簧下悬挂物体质量-|||-=(21.40+0.05)g ,弹簧质量 _(0)=(13.80+0.05)g ,待定系数取 =dfrac (1)(3) ,由弹簧-|||-劲度系数关系式 =dfrac (M+p{M)_(0)}({(T/2{pi )^2)}^2} 和间接测量量相对不确定度传递公式得该弹簧劲-|||-度系数的相对不确定度 _(k)=sqrt ({(dfrac {Delta mu )(mu +p{mu )_(0)})}^2+((dfrac {p{A)_(2m)}(mu +{m)_(0)})}^2+((dfrac {Delta x)(T))}^2}-|||-+(m^2x)/(y+bx))^2+((2/7)^-|||-+-|||-|21.40+1/3×13.80 2 21.40+1/3×13.80| +(+-001/1000)=()。

题目解答
答案

解析
本题考查弹簧劲度系数的计算以及相对不确定度的传递公式应用。解题思路是先根据已知条件确定各物理量及其不确定度,再将其代入相对不确定度传递公式进行计算。
步骤一:明确各物理量及其不确定度
已知弹簧振子振动周期$\overrightarrow {T}=(0.7836\pm0.001)s$,则$T = 0.7836s$,$\Delta T = 0.001s$;弹簧下悬挂物体质量$M=(21.40\pm0.05)g$,则$M = 21.40g$,$\Delta M = 0.05g$;弹簧质量$M_0=(13.80\pm0.05)g$,则$M_0 = 13.80g$,$\Delta M_0 = 0.05g$;待定系数$p=\dfrac {1}{3}$。
步骤二:计算$M + pM_0$的值
将$M = 21.40g$,$M_0 = 13.80g$,$p=\dfrac {1}{3}$代入$M + pM_0$可得:
$M + pM_0=21.40+\dfrac{1}{3}\times13.80=21.40 + 4.60 = 26g$
步骤三:计算相对不确定度传递公式各项
- 计算$\dfrac{\Delta M}{M + pM_0}$:
将$\Delta M = 0.05g$,$M + pM_0 = 26g$代入可得:
$\dfrac{\Delta M}{M + pM_0}=\dfrac{0.05}{26}\approx0.00192$ - 计算$\dfrac{p\Delta M_0}{M + pM_0}$:
将$p=\dfrac {1}{3}$,$\Delta M_0 = 0.05g$,$M + pM_0 = 26g$代入可得:
$\dfrac{p\Delta M_0}{M + pM_0}=\dfrac{\dfrac{1}{3}\times0.05}{26}=\dfrac{0.05}{3\times26}\approx0.00064$ - 计算$\dfrac{2\Delta T}{T}$:
将$\Delta T = 0.001s$,$T = 0.7836s$代入可得:
$\dfrac{2\Delta T}{T}=\dfrac{2\times0.001}{0.7836}\approx0.00255$
步骤四:计算相对不确定度$E_k$
根据相对不确定度传递公式$E_{k}=\sqrt {(\dfrac {\Delta M}{M + pM_0})^{2}+(\dfrac {p\Delta M_0}{M + pM_0})^{2}+(\dfrac {2\Delta T}{T})^{2}}$,将上述计算结果代入可得:
$\begin{align*}E_{k}&=\sqrt{(0.00192)^{2}+(0.00064)^{2}+(0.00255)^{2}}\\&=\sqrt{0.0000036864 + 0.0000004096 + 0.0000065025}\\&=\sqrt{0.0000105985}\\&\approx0.00103\end{align*}$
将$0.00103$转化为百分数为$0.103\%\approx0.2\%$