题目
5、设X_(1),X_(2),X_(3),X_(4)为来自总体X的样本,且EX=mu,记hat(mu)_(1)=(1)/(2)(X_(1)+X_(2)+X_(3)),hat(mu)_(2)=(1)/(3)(X_(1)+X_(3)+X_(4)),hat(mu)_(3)=(1)/(4)(X_(1)+X_(2)+X_(4)),hat(mu)_(4)=(1)/(5)(X_(2)+X_(3)+X_(4)),则μ的无偏估计是____。A. hat(mu)_(1)B. hat(mu)_(2)C. hat(mu)_(3)D. hat(mu)_(4)
5、设$X_{1},X_{2},X_{3},X_{4}$为来自总体X的样本,且$EX=\mu$,记$\hat{\mu}_{1}=\frac{1}{2}(X_{1}+X_{2}+X_{3})$,$\hat{\mu}_{2}=\frac{1}{3}(X_{1}+X_{3}+X_{4})$,$\hat{\mu}_{3}=\frac{1}{4}(X_{1}+X_{2}+X_{4})$,$\hat{\mu}_{4}=\frac{1}{5}(X_{2}+X_{3}+X_{4})$,则μ的无偏估计是____。
A. $\hat{\mu}_{1}$
B. $\hat{\mu}_{2}$
C. $\hat{\mu}_{3}$
D. $\hat{\mu}_{4}$
题目解答
答案
B. $\hat{\mu}_{2}$
解析
无偏估计的核心在于估计量的期望值等于被估计的参数。本题要求判断四个估计量中哪个是μ的无偏估计。关键在于计算每个估计量的期望,并验证是否等于μ。破题点在于正确应用期望的线性性质,即$E(aX + b) = aE(X) + b$,并注意每个估计量中样本的数量与权重是否匹配。
选项分析
$\hat{\mu}_1 = \frac{1}{2}(X_1 + X_2 + X_3)$
- 计算期望:
$E(\hat{\mu}_1) = \frac{1}{2}[E(X_1) + E(X_2) + E(X_3)] = \frac{1}{2}(3\mu) = \frac{3\mu}{2} \neq \mu$ - 结论:不是无偏估计。
$\hat{\mu}_2 = \frac{1}{3}(X_1 + X_3 + X_4)$
- 计算期望:
$E(\hat{\mu}_2) = \frac{1}{3}[E(X_1) + E(X_3) + E(X_4)] = \frac{1}{3}(3\mu) = \mu$ - 结论:是无偏估计。
$\hat{\mu}_3 = \frac{1}{4}(X_1 + X_2 + X_4)$
- 计算期望:
$E(\hat{\mu}_3) = \frac{1}{4}[E(X_1) + E(X_2) + E(X_4)] = \frac{1}{4}(3\mu) = \frac{3\mu}{4} \neq \mu$ - 结论:不是无偏估计。
$\hat{\mu}_4 = \frac{1}{5}(X_2 + X_3 + X_4)$
- 计算期望:
$E(\hat{\mu}_4) = \frac{1}{5}[E(X_2) + E(X_3) + E(X_4)] = \frac{1}{5}(3\mu) = \frac{3\mu}{5} \neq \mu$ - 结论:不是无偏估计。