题目
3.设总体X的密度函数为:f(x;lambda)=}lambda e^-lambda x,x>00,xleq0,其中lambda>0未知,X_(1),X_(2),... X_(n)为取自总体的一组样本,求λ的矩估计及极大似然估计量.
3.设总体X的密度函数为:
$f(x;\lambda)=\begin{cases}\lambda e^{-\lambda x},x>0\\0,x\leq0\end{cases},其中\lambda>0未知,$
$X_{1},X_{2},\cdots X_{n}$为取自总体的一组样本,求λ的矩估计及极大似然估计量.
题目解答
答案
**矩估计:**
总体均值 $E(X) = \frac{1}{\lambda}$,令样本均值 $\overline{X} = \frac{1}{\lambda}$,解得
$$
\hat{\lambda} = \frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^n X_i}.
$$
**极大似然估计:**
似然函数 $L(\lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n X_i}$,取对数得
$$
\ell(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^n X_i,
$$
求导并令导数为零,解得
$$
\hat{\lambda} = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}}.
$$
**答案:**
$$
\boxed{\frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^n X_i}}
$$
解析
步骤 1:矩估计
总体均值 $E(X) = \frac{1}{\lambda}$,令样本均值 $\overline{X} = \frac{1}{\lambda}$,解得 $$ \hat{\lambda} = \frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^n X_i}. $$
步骤 2:极大似然估计
似然函数 $L(\lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n X_i}$,取对数得 $$ \ell(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^n X_i, $$ 求导并令导数为零,解得 $$ \hat{\lambda} = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}}. $$
总体均值 $E(X) = \frac{1}{\lambda}$,令样本均值 $\overline{X} = \frac{1}{\lambda}$,解得 $$ \hat{\lambda} = \frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^n X_i}. $$
步骤 2:极大似然估计
似然函数 $L(\lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n X_i}$,取对数得 $$ \ell(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^n X_i, $$ 求导并令导数为零,解得 $$ \hat{\lambda} = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}}. $$