题目
3、(12分)设总体ξ有分布密度p(x)=}theta x^theta-1&0le xle 10&其他其中theta>0是待估参数,(0.11,0.24,0.09,0.43,0.07,0.38)为样本(xi_(1),xi_(2),...,xi_(6))的样本值,试求theta的矩估计量以及相应的矩估计值与最大似然估计。
3、(12分)设总体ξ有分布密度
$p(x)=\begin{cases}\theta x^{\theta-1}&0\le x\le 1\\0&其他\end{cases}$
其中$\theta>0$是待估参数,
(0.11,0.24,0.09,0.43,0.07,0.38)为样本
$(\xi_{1},\xi_{2},\cdots,\xi_{6})$的样本值,试求$\theta$的矩估计量以及相应的矩估计值与最大似然估计。
题目解答
答案
为了找到参数$\theta$的矩估计量和最大似然估计,我们将按照以下步骤进行:
### 第1步:矩估计
矩估计涉及将总体矩与样本矩相等。对于给定的密度函数 $ p(x) = \theta x^{\theta-1} $ 对于 $0 \le x \le 1$,总体的期望值(第一矩)为:
\[
E(X) = \int_0^1 x \cdot \theta x^{\theta-1} \, dx = \int_0^1 \theta x^\theta \, dx = \theta \left[ \frac{x^{\theta+1}}{\theta+1} \right]_0^1 = \frac{\theta}{\theta+1}
\]
样本均值 $\bar{X}$ 是样本值的平均值:
\[
\bar{X} = \frac{1}{6} (0.11 + 0.24 + 0.09 + 0.43 + 0.07 + 0.38) = \frac{1}{6} \times 1.32 = 0.22
\]
将总体均值与样本均值相等,我们得到:
\[
\frac{\theta}{\theta+1} = 0.22
\]
解$\theta$:
\[
\theta = 0.22(\theta + 1) \implies \theta = 0.22\theta + 0.22 \implies \theta - 0.22\theta = 0.22 \implies 0.78\theta = 0.22 \implies \theta = \frac{0.22}{0.78} = \frac{11}{39}
\]
因此,$\theta$的矩估计值为:
\[
\boxed{\frac{11}{39}}
\]
### 第2步:最大似然估计
最大似然估计涉及最大化似然函数。似然函数 $L(\theta)$ 为:
\[
L(\theta) = \prod_{i=1}^6 \theta x_i^{\theta-1} = \theta^6 \prod_{i=1}^6 x_i^{\theta-1}
\]
取自然对数似然函数:
\[
\ell(\theta) = \ln L(\theta) = 6 \ln \theta + (\theta-1) \sum_{i=1}^6 \ln x_i
\]
计算对数似然函数的导数并设为零:
\[
\frac{d\ell(\theta)}{d\theta} = \frac{6}{\theta} + \sum_{i=1}^6 \ln x_i = 0
\]
解$\theta$:
\[
\frac{6}{\theta} = -\sum_{i=1}^6 \ln x_i \implies \theta = -\frac{6}{\sum_{i=1}^6 \ln x_i}
\]
计算 $\sum_{i=1}^6 \ln x_i$:
\[
\ln 0.11 \approx -2.20357, \quad \ln 0.24 \approx -1.42712, \quad \ln 0.09 \approx -2.40794, \quad \ln 0.43 \approx -0.84397, \quad \ln 0.07 \approx -2.65926, \quad \ln 0.38 \approx -0.96758
\]
\[
\sum_{i=1}^6 \ln x_i \approx -2.20357 - 1.42712 - 2.40794 - 0.84397 - 2.65926 - 0.96758 = -10.50944
\]
因此,$\theta$的最大似然估计值为:
\[
\theta = -\frac{6}{-10.50944} \approx 0.57096
\]
因此,$\theta$的最大似然估计值为:
\[
\boxed{0.57096}
\]