题目
5-3 已知误差方程为v_(1)=10.013-x_(1) v_(3)=10.002-x_(3) v_(5)=0.008-(x_(1)-x_(3))v_(2)=10.010-x_(2) v_(4)=0.004-(x_(1)-x_(2)) v_(6)=0.006-(x_(2)-x_(3))试给出x_(1)、x_(2)、x_(3)的最小二乘法处理及其相应精度。
5-3 已知误差方程为
$v_{1}=10.013-x_{1}$ $v_{3}=10.002-x_{3}$ $v_{5}=0.008-(x_{1}-x_{3})$
$v_{2}=10.010-x_{2}$ $v_{4}=0.004-(x_{1}-x_{2})$ $v_{6}=0.006-(x_{2}-x_{3})$
试给出$x_{1}$、$x_{2}$、$x_{3}$的最小二乘法处理及其相应精度。
题目解答
答案
-
构造误差方程
将给定的误差方程表示为矩阵形式:
$V = L - AX, \quad A = \begin{pmatrix} \text{解得 } \hat{X} = (A^T A)^{-1} A^T L.$ -
求解
计算得:
$\boxed{ x_1 = 10.0125, \quad x_2 = 10.0093, \quad x_3 = 10.0033 }$ -
计算精度
残差平方和为 $4.51 \times 10^{-6}$,标准差 $\sigma = 2.21 \times 10^{-3}$。
$\boxed{ \sigma_{x_1} = \sigma \sqrt{0.5}, \quad \sigma_{x_2} = \sigma \sqrt{0.5}, \quad \sigma_{x_3} = \sigma \sqrt{0.5}$ -
答案
$\boxed{ x_1 = 10.0125, \quad x_2 = 10.0093, \quad x_3 = 10.0033$
解析
本题考查最小二乘法在误差方程处理中的应用,解题思路是先将误差方程转化为矩阵形式,然后利用最小二乘法原理求出未知数的最小二乘估计值,最后根据残差平方和计算标准差,进而得到未知数的精度。
- 构造误差方程的矩阵形式
已知误差方程为:
$v_{1}=10.013 - x_{1}$
\\(v_{2}=10.010 - x_{2}\)
$v_{3}=10.002 - x_{3}$
$v_{4}=0.004 - (x_{1}-x_{2})$
$v_{5}=0.008 - (x_{1}-x_{3})$
$v_{6}=0.006 - (x_{2}-x_{3})$
将其写成矩阵形式$V = L - AX$,其中:
$V=\begin{pmatrix}v_1\\v_2\\v_3\\v_4\\v_5\\v_6\end{pmatrix}$,$L=\begin{pmatrix}10.013\\10.010\\10.002\\0.004\\0.008\\0.006\end{pmatrix}$,$A=\begin{pmatrix}-1&0&0\\0&-1&0\\0&0&-1\\-1&1&0\\-1&0&1\\0&-1&1\end{pmatrix}$,$X=\begin{pmatrix}x_1\\x2\\x3\end{pmatrix}$ - 求解未知数的最小二乘估计值$\hat{X}$
根据最小二乘法原理,$\hat{X}=(A^TA)^{-1}A^TL$。- 先计算$A^TA$:
$A^TA=\begin{pmatrix}-1&0&0&-1&-1&0\\0&-1&0&1&0&-1\\0&0&-1&0&1&1\end{pmatrix}\begin{pmatrix}-1&0&0\\0&-1&0\\0&0&-1\\-1&1&0\\-1&0&1\\0&-1&1\end{pmatrix}=\begin{pmatrix}3&-1&-1\\-1&3&-1\\-1&-1&3\end{pmatrix}$ - 再求$(A^TA)^{-1}$:
$\vert A^TA\vert=3\times\begin{vmatrix}3&-1\\-1&3\end{vmatrix}-(-1)\times\begin{vmatrix}-1&-1\\-1&3\end{vmatrix}+(-1)\times\begin{vmatrix}-1&3\\-1&-1\end{vmatrix}=3\times(9 - 1)+1\times(-3 - 1)-1\times(1 + 3)=24 - 4 - 4 = 16$
$A^TA$的伴随矩阵$adj(A^TA)=\begin{pmatrix}8&4&4\\4&8&4\\4&4&8\end{pmatrix}$
则$(A^TA)^{-1}=\frac{1}{\vert A^TA\vert}adj(A^TA)=\frac{1}{16}\begin{pmatrix}8&4&4\\4&8&4\\4&4&8\end{pmatrix}$ - 接着求$A^TL$
$A^TL=\begin{pmatrix}-1&0&0&-1&-1&0\\0&-1&0&1&0&-1\\0&0&-1&0&1&1\end{pmatrix}\begin{pmatrix}10.013\\10.010\\10.002\\0.004\\0.008\\0.006\end{pmatrix}=\begin{pmatrix}-10.013-0.004 - 0.008\\-10.010+0.004 - 0.006\\-10.002+0.008+0.006\end{pmatrix}=\begin{pmatrix}-10.025\\10.008\\-9{y = 3&-1&-1\\-1&3&-1\\-1&-1&3\end{pmatrix}$ - 最后求$\hat{X}$
$\hat{X}=(A^TA)^{-1}A^TL=\frac{frac{1}{16}\begin{pmatrix}8&4&4\\4&8&4\\4&4&8\end{p6}\begin{pmatrix}-10.025\\10.008\\-9.994\end{pmatrix}=\begin{pmatrix}10.0125\\10.0093\\10.0033\end{pmatrix}$
即\(10.0125, 10.0093, 10.0033) 3. **计算精度计算** - 计算残差平方和$V^TV$
$V = L - A\hat{X}=\begin{pmatrix}10.013\\10.010\\10.002\\0.004\\0.008\\0.006\end{pmatrix}-\begin{pmatrix}-1&0&0\\0&-1&0\\0&0&-1\\-1&1&0\\-1&0&1\\0&-1&1\end{pmatrix}\begin{pmatrix}10.0125\\10.0093\\10.0033\end{pmatrix}=\begin{pmatrix}0.0005\\0.0007\\-0.0007\\0.0002\\-0.0002\\0.0002\end{pmatrix}$
$V^TV=\begin{pmatrix}0.0005&0.0007&-0.0007&0.0002&-0.0002&0.0002\end{pmatrix}\begin{pmatrix}0.0005\\0.0007\\-0.007\\0.0002\\-0.0002\\0.0002\end{pmatrix}=4.51\times10^{-6}$ - 计算标准差$\sigma$
自由度$n - u=6 - 3 = 3$,$\sigma=\sqrt{\frac{V^TV}{n - u}}=\sqrt{\frac{4.1\times10^{-6}}{3}}\approx2.21\times10^{-6}$ - 计算未知数的精度$\sigma_{x_i}$
$\sigma_{x_i}=\sigma\sqrt{Q_{ii}}$,其中$Q_{ii}$是$(A^TA)^{-1}$的对角元素。
$(A^TA)^{-1}=\frac{1}{16}\begin{pmatrix}8&4&4\\4&8&4\\4&4&8\end{pmatrix}$,$Q_{11}=Q_{222}=Q_{33}=\frac{8}{16}=0.5$
所以$\sigma_{x_1}=\ \sigma\sigma\sqrt{0.5}$,$\sigma_{x_2}=\sigma\sqrt{0.5}$,$\sigma_{x_3}=\sigma\sqrt{0.5}$
- 先计算$A^TA$: