题目
九、设总体X的概率密度为-|||-f(x)= ) (1+theta )(x)^theta ,0lt xlt 1 0 .-|||-其中未知参数 gt -1, X1,X2,···,Xn为来自总体X的简单随机样本.求θ的矩估计量-|||-和最大似然估计量.

题目解答
答案

解析
步骤 1:求总体X的期望E(X)
根据概率密度函数f(x)的定义,总体X的期望E(X)可以通过积分计算得到:
\[ E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \cdot (1+\theta) x^{\theta} dx \]
\[ = (1+\theta) \int_{0}^{1} x^{1+\theta} dx \]
\[ = (1+\theta) \left[ \frac{x^{2+\theta}}{2+\theta} \right]_{0}^{1} \]
\[ = (1+\theta) \cdot \frac{1}{2+\theta} \]
\[ = \frac{\theta + 1}{\theta + 2} \]
步骤 2:求θ的矩估计量
令样本均值 $\overline{X}$ 等于总体期望E(X),即:
\[ \overline{X} = \frac{\theta + 1}{\theta + 2} \]
解得:
\[ \theta = \frac{2\overline{X} - 1}{1 - \overline{X}} \]
因此,θ的矩估计量为:
\[ \hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}} \]
步骤 3:求θ的最大似然估计量
似然函数为:
\[ L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (1+\theta) x_i^{\theta} = (1+\theta)^n \prod_{i=1}^{n} x_i^{\theta} \]
对数似然函数为:
\[ \ln L(\theta) = n \ln (1+\theta) + \theta \sum_{i=1}^{n} \ln x_i \]
对θ求导并令导数等于0,得到:
\[ \frac{d \ln L(\theta)}{d\theta} = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln x_i = 0 \]
解得:
\[ \theta = -\frac{n}{\sum_{i=1}^{n} \ln x_i} - 1 \]
因此,θ的最大似然估计量为:
\[ \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i} - 1 \]
根据概率密度函数f(x)的定义,总体X的期望E(X)可以通过积分计算得到:
\[ E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \cdot (1+\theta) x^{\theta} dx \]
\[ = (1+\theta) \int_{0}^{1} x^{1+\theta} dx \]
\[ = (1+\theta) \left[ \frac{x^{2+\theta}}{2+\theta} \right]_{0}^{1} \]
\[ = (1+\theta) \cdot \frac{1}{2+\theta} \]
\[ = \frac{\theta + 1}{\theta + 2} \]
步骤 2:求θ的矩估计量
令样本均值 $\overline{X}$ 等于总体期望E(X),即:
\[ \overline{X} = \frac{\theta + 1}{\theta + 2} \]
解得:
\[ \theta = \frac{2\overline{X} - 1}{1 - \overline{X}} \]
因此,θ的矩估计量为:
\[ \hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}} \]
步骤 3:求θ的最大似然估计量
似然函数为:
\[ L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (1+\theta) x_i^{\theta} = (1+\theta)^n \prod_{i=1}^{n} x_i^{\theta} \]
对数似然函数为:
\[ \ln L(\theta) = n \ln (1+\theta) + \theta \sum_{i=1}^{n} \ln x_i \]
对θ求导并令导数等于0,得到:
\[ \frac{d \ln L(\theta)}{d\theta} = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln x_i = 0 \]
解得:
\[ \theta = -\frac{n}{\sum_{i=1}^{n} \ln x_i} - 1 \]
因此,θ的最大似然估计量为:
\[ \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i} - 1 \]