由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289③关于浙江省财政预算[1]收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t检验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%2.4(1)对建筑面积与建造单位成本模型,用Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 12:40Sample: 1 12Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333A. djusted R-squared 0.941512 S.D. dependent var 131.2252 B. S.E. of regression 31.73600 Akaike info criterion 9.903792 C. Sum squared resid 10071.74 Schwarz criterion 9.984610 D. Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 E. -statistic 178.0715 Durbin-Watson stat 1.172407 F. Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: G. Y=1845.475--64.18400X (2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。 (3) Y=1845.475--64.18400X得,当x=4.5,y=1556.647 ②再进行区间估计: 2.4 views分析结果如下: ependent Variable: Y Method: Least Squares ate: 12/01/14 Time: 12:40 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean ependent var 1619.333 djusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 -statistic 178.0715 Durbin-Watson stat 1.172407 Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X (2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。 (3) Y=1845.475--64.18400X得,当x=4.5,y=1556.647 ②再进行区间估计: 2.4 views分析结果如下: ependent Variable: Y Method: Least Squares ate: 12/01/14 Time: 12:40 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean ependent var 1619.333 djusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 -statistic 178.0715 Durbin-Watson stat 1.172407 Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X (2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。 (3) Y=1845.475--64.18400X得,当x=4.5,y=1556.647 ②再进行区间估计::1619.333-|||-3.523333-|||-Median-|||-1630.000-|||-3.715000-|||-Maximum-|||-1860.000-|||-6.230000-|||-Minimum 1419.000 0.600000-|||-Std.Dev. 131.2252 1.989419-|||-Skewness 0.003403 -0.060130-|||-Kurtosis 2.346511 1.664917-|||-Jarque-Bera 0.213547 0.898454-|||-Probability 0.898729 0.638121-|||-Sum 19432.00 42.28000 1619.333-|||-3.523333-|||-Median-|||-1630.000-|||-3.715000-|||-Maximum-|||-1860.000-|||-6.230000-|||-Minimum 1419.000 0.600000-|||-Std.Dev. 131.2252 1.989419-|||-Skewness 0.003403 -0.060130-|||-Kurtosis 2.346511 1.664917-|||-Jarque-Bera 0.213547 0.898454-|||-Probability 0.898729 0.638121-|||-Sum 19432.00 42.28000 由上表可知, x (12—1)=43.5357 X)2=(4.5— 3.523333)2=0.95387843 Xf=4.5时,将相关数据代入计算得到: 1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤ Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843 Yf的置信区间为(1556.647—478.1231, 1556.647+478.1231)
由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289
③关于浙江省财政预算[1]收入与全省生产总值的模型,检验其显著性:
1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t检验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。
④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%
2.4
(1)对建筑面积与建造单位成本模型,用Eviews分析结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/01/14 Time: 12:40
Sample: 1 12
Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000
C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333
A. djusted R-squared 0.941512 S.D. dependent var 131.2252B. S.E. of regression 31.73600 Akaike info criterion 9.903792
C. Sum squared resid 10071.74 Schwarz criterion 9.984610
D. Log likelihood -57.42275 Hannan-Quinn criter. 9.873871
E. -statistic 178.0715 Durbin-Watson stat 1.172407
F. Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为:
G. Y=1845.475--64.18400X
(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。
(3)
Y=1845.475--64.18400X得,当x=4.5,y=1556.647
②再进行区间估计:
2.4
views分析结果如下:
ependent Variable: Y
Method: Least Squares
ate: 12/01/14 Time: 12:40
Sample: 1 12
Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000
1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean
ependent var 1619.333
djusted R-squared 0.941512 S.D. dependent var 131.2252
S.E. of regression 31.73600 Akaike info criterion 9.903792
Sum squared resid 10071.74 Schwarz criterion 9.984610
Log likelihood -57.42275 Hannan-Quinn criter. 9.873871
-statistic 178.0715 Durbin-Watson stat 1.172407
Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为:
Y=1845.475--64.18400X
(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。
(3)
Y=1845.475--64.18400X得,当x=4.5,y=1556.647
②再进行区间估计:
2.4
views分析结果如下:
ependent Variable: Y
Method: Least Squares
ate: 12/01/14 Time: 12:40
Sample: 1 12
Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000
1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean
ependent var 1619.333
djusted R-squared 0.941512 S.D. dependent var 131.2252
S.E. of regression 31.73600 Akaike info criterion 9.903792
Sum squared resid 10071.74 Schwarz criterion 9.984610
Log likelihood -57.42275 Hannan-Quinn criter. 9.873871
-statistic 178.0715 Durbin-Watson stat 1.172407
Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为:
Y=1845.475--64.18400X
(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。
(3)
Y=1845.475--64.18400X得,当x=4.5,y=1556.647
②再进行区间估计::


由上表可知,
x (12—1)=43.5357
X)2=(4.5— 3.523333)2=0.95387843
Xf=4.5时,将相关数据代入计算得到:
1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤
Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843
Yf的置信区间为(1556.647—478.1231, 1556.647+478.1231)
题目解答
答案
Adjusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 F-statistic 178.0715 Durbin-Watson stat 1.172407 Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X ( 2 )经济意义:建筑面积每增加 1 万平方米,建筑单位成本每平方米减少 64.18400 元。 ( 3 ) ① 首先进行点预测,由 Y=1845.475--64.18400X 得,当 x=4.5 , y=1556.647 ② 再进行区间估计: 2.4 ( 1 )对建筑面积与建造单位成本模型,用 Eviews 分析结果如下: Dependent Variable: Y Method: Least Squares Date: 12/01/14 Time: 12:40 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000 C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333 Adjusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 F-statistic 178.0715 Durbin-Watson stat 1.172407 Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X ( 2 )经济意义:建筑面积每增加 1 万平方米,建筑单位成本每平方米减少 64.18400 元。 ( 3 ) ① 首先进行点预测,由 Y=1845.475--64.18400X 得,当 x=4.5 , y=1556.647 ② 再进行区间估计: 2.4 ( 1 )对建筑面积与建造单位成本模型,用 Eviews 分析结果如下: Dependent Variable: Y Method: Least Squares Date: 12/01/14 Time: 12:40 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000 C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333 Adjusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 F-statistic 178.0715 Durbin-Watson stat 1.172407 Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X ( 2 )经济意义:建筑面积每增加 1 万平方米,建筑单位成本每平方米减少 64.18400 元。 ( 3 ) ① 首先进行点预测,由 Y=1845.475--64.18400X 得,当 x=4.5 , y=1556.647 ② 再进行区间估计 : : 由上表可知, ∑x2=∑ ( Xi—X ) 2=δ2x(n—1)= 1.9894192 x (12—1)=43.5357 (Xf—X)2=(4.5— 3.523333)2=0.95387843 当 Xf=4.5 时,将相关数据代入计算得到: 1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤ Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843 即 Yf 的置信区间为( 1556.647—478.1231, 1556.647+478.1231 )