(X_1, X_2, X_3, X_4) 是来自总体 X sim N(mu, sigma^2) 的样本,下列统计量中作为总体均值 mu 的估计量最有效的是()A. (1)/(4) X_1 + (1)/(4) X_2 + (1)/(4) X_3 + (1)/(4) X_4B. (1)/(5) X_1 + (1)/(5) X_2 + (1)/(5) X_3 + (2)/(5) X_4C. (1)/(8) X_1 + (3)/(8) X_2 + (1)/(4) X_3 + (1)/(4) X_4D. (1)/(6) X_1 + (1)/(6) X_2 + (1)/(3) X_3 + (1)/(3) X_4
A. $\frac{1}{4} X_1 + \frac{1}{4} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4$
B. $\frac{1}{5} X_1 + \frac{1}{5} X_2 + \frac{1}{5} X_3 + \frac{2}{5} X_4$
C. $\frac{1}{8} X_1 + \frac{3}{8} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4$
D. $\frac{1}{6} X_1 + \frac{1}{6} X_2 + \frac{1}{3} X_3 + \frac{1}{3} X_4$
题目解答
答案
解析
本题考查知识点为估计量有效性的判断,,解题思路是先明确估计量有效性的判断标准,即对于总体均值 $\mu$ 的无偏估计量,方差越小越有效。然后分别计算各选项统计量的方差,最后比较方差大小得出最有效的估计量。
步骤一:明确估计量有效性的判断标准
设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是参数 $\theta$ 的两个无偏估计量,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\hat{\theta}_1\}$ 比 $\{\hat{\theta}_2\}$ 更有效。对于本题,要判断哪个统计量作为总体均值 $\mu$ 的估计量最有效,需先判断各统计量是否为无偏估计量,若是,则比较它们的方差大小,方差越小越有效。
步骤二:判断各选项统计量是否为无偏估计量
已知 $(X_1, X_2, X_3, X_4)$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,则 $E(X_i)=\mu$,$D(X)=\sigma^2$,且 $X_1, X_2, X_3, X_4$ 相互独立。
- 选项A:
设 $\hat{\mu}_A = \frac{1}{4} X_1 + \frac{frac{1}{4} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4$,根据期望的线性性质 $E(aX + bY) = aE(X) + bE(Y)$,可得:
$E(\hat{\mu}_A) = E(\frac{1}{4} X_1 + \frac{1}{4} X_2 + \frac{frac{1}{4} X_3 + \frac{1}{4} X_4) = \frac{1}{4}E(X_1) + \frac{1}{4}E(X_2) + \frac{1}{4}E(X_3) + \frac{frac{1}{4}E(X_4)$
因为 $E(X_i)=\mu$,$i = 1,2,3,4$,所以 $E(\hat{\mu}_A) = \frac{1}{4}\mu + \frac{1}{4}\mu + \frac{1}{4}\mu + \frac{1}{4}\mu = \mu$,故 $\hat{\mu}_A$ 是 $\mu$ 的无偏估计量。 - 选项B:
设 $\hat{\mu}_B = \frac{1}{5} X_1 + \frac{1}{5} X_2 + \frac{1}{5} X_3 + \frac{2}{5} X_4$,同理可得:
$E(\hat{\mu}_B) = E(\frac{1}{5} X_1 + \frac{1}{5} X_2 + \frac{1}{5} X_3 + \frac{2}{5} X_4) = \frac{1}{5}E(X_1) + \frac{1}{5}E(X_2) + \frac{1}{5}E(X_3) + \frac{2}{5}E(X_4)$
$E(\hat{\mu}_B) = \frac{1}{5}\mu + \frac{1}{5}\mu + \frac{1}{5}\mu + \frac{2}{5}\mu = \mu$,故 $\hat{\mu}_B$ 是 $\mu$ 的无偏估计量。 - 选项C:
设 $\hat{\mu}_C = \frac{1}{8} X_1 + \frac{3}{8} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4$,同理可得:
$E(\hat{\hat{\mu}_C) = E(\frac{1}{8} X_1 + \frac{3}{8} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4) = \frac{1}{8}E(X_1) + \frac{3}{8}E(X_2) + \frac{1}{4}E(X_3) + \frac{1}{4}E(X_4)$
$E(\hat{\mu}_C) = \frac{1}{8}\mu + \frac{3}{8}\mu + \frac{1}{4}\mu + \frac{1}{4}\mu = \mu$,故 $\hat{\mu}_C$ 是 $\mu$ 的无偏估计量。 - 选项D:
设 $\hat{\mu}_D = \frac{1}{6} X_1 + \frac{1}{6} X_2 + \frac{1}{3} X_3 + \frac{1}{3} X_4$,同理可得:
$E(\hat{\mu}_D) = E(\frac{1}{6} X_1 + \frac{1}{6} X_2 + \frac{1}{3} X_3 + \frac{1}{3} X_4) = \frac{1}{6}E(X_1) + \frac{1}{6}E(X{{X_2) + \frac{1}{3}E(X_3) + \frac{1}{3}E(X_4)$
$E(\hat{\mu}_D) = \frac{1}{6}\mu + \frac{1}{6}\mu + \frac{1}{3}\mu + \frac{1}{3}\mu = \mu$,故 $\hat{\mu}_D$ 是 $\mu$ 的无偏估计量。
步骤三:计算各无偏估计量的方差
根据方差的性质 $D(aX + bY) = a^2D(X) + b^2D(Y)$($X$,$Y$ 相互独立),可得:
- 选项A:
$D(\hat{\mu}_A) = D(\frac{1}{4} X_1 + \frac{1}{4} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4) = (\frac{1}{4})^2D(X_1) + (\frac{1}{4})^2D(X_2) + (\frac{1}{4})^2D(X_3) + (\frac{1}{4})^2D(X_4)$
因为 $D(X_i)=\sigma^2$,$i = 1,2,3,4$,所以 $D(\hat{\mu}_A) = \frac{1}{164}\sigma^2 + \frac{1}{64}\sigma^2 + \frac{1}{64}\sigma^2 + \frac{1}{64}\sigma^2 = \frac{1}{16}\sigma^2$。 - 选项B:
$D(\hat{\mu}_B) = D(\frac{1}{5} X_1 + \frac{1}{5} X_2 + \frac{1}{5} X_3 + \frac{2}{5} X_4) = (\frac{1}{5��})^2D(X_1) + (\frac{1}{5})^2D(X_2) + (\frac{1}{5})^2D(X_3) + (\frac{2}{5})^2D(X_4)$
$D(\hat{\mu}_B) = \frac{1}{25}\sigma^2 + \frac{1}{25}\sigma^2 + \frac{1}{25}\sigma^2 + \frac{4}{25}\sigma^2 = \frac{7}{25}\sigma^2$。 - 选项C:
$D(\hat{\mu}_C) = D(\frac{1}{8} X_1 + \frac{3}{8} X_2 + \frac{1}{4} X_3 + \frac{1}{4} X_4) = (\frac{1}{8})^2D(X_1) + (\frac{3}{8})^2D(X_2) + (\frac{1}{4})^2D(X_3) + (\frac{1}{4})^2D(X_4)$
$D(\hat{\mu}_C}) = \frac{1}{64}\sigma^2 + \frac{9}{64}\sigma^2 + \frac{4}{64}\sigma^2 + \frac{4}{64}\sigma^2 = \frac{18}{64}\sigma^ = \frac{9}{32}\sigma^2$。
步骤四:比较方差大小
比较 $D(\hat{\mu}_A) = \frac{1}{16}\sigma^2$,$D(\hat{\mu}_B) = \frac{7}{25a}\sigma^2$,$D(\hat{\mu}_C) = \frac{9}{32}\sigma^2$ 的大小:
$\frac{1}{16}\sigma^2 = \frac{2}{32}\sigma^2$,因为 $\frac{2}{32}\sigma^2 < \frac{7}{25}\sigma^2 < \frac{9}{32}\sigma^2$,所以 $D(\hat{\mu}_A) < D(\hat{\mu}_B) < D(\hat{\mu}_C)$。