题目
设_(1),(X)_(2), (L)_(1)(X)_(n))为来自正态总体_(1),(X)_(2), (L)_(1)(X)_(n))的简单随机样本,其中_(1),(X)_(2), (L)_(1)(X)_(n))0未知" data-width="170" data-height="30" data-size="2520" data-format="png" style="max-width:100%">,记_(1),(X)_(2), (L)_(1)(X)_(n)),则()_(1),(X)_(2), (L)_(1)(X)_(n))
设
为来自正态总体
的简单随机样本,其中
0未知" data-width="170" data-height="30" data-size="2520" data-format="png" style="max-width:100%">,记
,则()

题目解答
答案
解:答案A




解析
步骤 1:计算期望值
由于 $X_i \sim N(\mu_0, \sigma^2)$,则 $E(X_i) = \mu_0$,$Var(X_i) = \sigma^2$。因此,$E[(X_i - \mu_0)^2] = Var(X_i) = \sigma^2$。所以,$E\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_0)^2\right) = \frac{1}{n}\sum_{i=1}^{n}E[(X_i - \mu_0)^2] = \frac{1}{n} \cdot n \cdot \sigma^2 = \sigma^2$。
步骤 2:计算方差
由于 $X_i$ 是独立的,$Var[(X_i - \mu_0)^2] = 2\sigma^4$。因此,$Var\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_0)^2\right) = \frac{1}{n^2}\sum_{i=1}^{n}Var[(X_i - \mu_0)^2] = \frac{1}{n^2} \cdot n \cdot 2\sigma^4 = \frac{2\sigma^4}{n}$。
由于 $X_i \sim N(\mu_0, \sigma^2)$,则 $E(X_i) = \mu_0$,$Var(X_i) = \sigma^2$。因此,$E[(X_i - \mu_0)^2] = Var(X_i) = \sigma^2$。所以,$E\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_0)^2\right) = \frac{1}{n}\sum_{i=1}^{n}E[(X_i - \mu_0)^2] = \frac{1}{n} \cdot n \cdot \sigma^2 = \sigma^2$。
步骤 2:计算方差
由于 $X_i$ 是独立的,$Var[(X_i - \mu_0)^2] = 2\sigma^4$。因此,$Var\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_0)^2\right) = \frac{1}{n^2}\sum_{i=1}^{n}Var[(X_i - \mu_0)^2] = \frac{1}{n^2} \cdot n \cdot 2\sigma^4 = \frac{2\sigma^4}{n}$。