logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
统计
题目

9、设(X_(1),X_(2),...,X_(n))为来自总体Xsim N(0,sigma^2)的一个样本,overline(X)为样本均值,S^2为样本方差,则下列结论中正确的是()A. (overline(X))/(S)sqrt(n)sim t(n);B. overline(X)sim N(0,sigma^2);C. (1)/(sigma^2)sum_(i=1)^nX_(i)^2sim chi^2(n-1);D. (1)/(sigma^2)sum_(i=1)^nX_(i)^2sim chi^2(n).

9、设$(X_{1},X_{2},\cdots,X_{n})$为来自总体$X\sim N(0,\sigma^{2})$的一个样本,$\overline{X}$为样本均值,$S^{2}$为样本方差,则下列结论中正确的是()

A. $\frac{\overline{X}}{S}\sqrt{n}\sim t(n)$;

B. $\overline{X}\sim N(0,\sigma^{2})$;

C. $\frac{1}{\sigma^{2}}\sum_{i=1}^{n}X_{i}^{2}\sim \chi^{2}(n-1)$;

D. $\frac{1}{\sigma^{2}}\sum_{i=1}^{n}X_{i}^{2}\sim \chi^{2}(n)$.

题目解答

答案

D. $\frac{1}{\sigma^{2}}\sum_{i=1}^{n}X_{i}^{2}\sim \chi^{2}(n)$.

解析

本题本题主要考察正态总体下的抽样分布,包括样本均值、样本方差的分布以及$\chi^2$分布、$t$分布的定义,需逐一分析选项正确性:

选项A:$\frac{\overline{X}}{S}\sqrt{n}\sim t(n)$

  • 样本均值$\overline{X}\sim N(0,\frac{\sigma^2}{n})$,标准化后标准化得$\frac{\overline{X}}{\sigma/\sqrt{n}}\sim N(0,1)$。
  • 样本方差$S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$,则$\frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1)$,且$\overline{X}$与$S^2$独立。
  • 根据$t$分布定义:$t=\frac{N(0,1)}{\sqrt{\chi^2(k)/k}}$,故正确形式应为$\frac{\overline{X}}{S/\sqrt{n}}\sim t(n-1)$(自由度为$n-1$),而非$n$)。
  • 选项A错误。

选项B:$\overline{X}\sim N(0,\sigma^2)$

  • 总体$X\sim N(0,\sigma^2)$,样本均值$\overline{X}=\frac{1}{n}\sum_{i=1}^nX_i$,其方差为$Var(\overline{X})=\frac{1}{n^2}\sum_{i=1}^nVar(X_i)=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}$。
  • 故$\overline{X}\sim N(0,\frac{\sigma^2}{n})$,而非$N(0,\sigma^2)$。
  • 选项B错误。

选项C:$\frac{1}{\sigma^2}\sum_{i=1}^nX_i^2\sim\chi^2(n-1)$

  • 总体$X\sim N(0,\sigma^2)$,则每个$X_i\sim N(0,\sigma^2)$,标准化得$\frac{X_i}{\sigma}\sim N(0,1)$。
  • $\chi^2$分布定义:若$Y_1,\cdots,Y_n$独立且均$\sim N(0,1)$,$\sum_{i=1}^nY_i^2\sim\chi^2(n)$(自由度为$n$)。
  • 此处$\sum_{i=1}^n(\frac{X_i}{\sigma})^2=\frac{1}{\sigma^2}\sum_{i=1}^nX_i^2\sim\chi^2(n)$,自由度为$n$而非$n-1$。
  • 选项C错误。

选项D:$\frac{1}{\sigma^2}\sum_{i=1}^nX_i^2\sim\chi^2(n)$

  • 由选项C分析:每个$\frac{X_i}{\sigma}\sim N(0,1)$且独立,故$\sum_{i=1}^n(\frac{X_i}{\sigma})^2=\frac{1}{\sigma^2}\sum_{i=1}^nX_i^2\sim\chi^2(n)$(自由度$n$)。
  • 选项D正确。

相关问题

  • 下列说法正确的是()A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差和方差的计算方式完全一致C. 协方差衡量了多个变量的分布D. 方差描述了样本数据的波动程度

  • {1.5分)确定研究总体和样本时,不需要考虑A. 立题依据B. 样本量C. 抽样方法D. 目标总体E. 纳入及排除标准

  • 请你从下表中找出1~100中所有质数.并数一数一共多少个. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  • 假定用于分析的数据包含属性age.数据元组[1]中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:A. 18.3B. 22。6C. 26。8D. 27。9

  • 44.2021年,我国人均预期寿命提高到了()。A. 78岁B. 79岁C. 78.2岁D. 79.2岁

  • 48皮尔逊相关系数的取值范围为0到正无穷。()A. 错误B. 正确

  • 5.聚类分析可以看作是一种非监督的分类。()

  • 皮尔逊相关系数的取值范围为0到正无穷。()A. 正确B. 错误

  • 对研究对象制定明确的纳入标准和排除标准,是为了保证样本的A. 可靠性B. 可行性C. 代表性D. 合理性E. 科学性

  • 1. 名词解释 假设检验 (请在答题纸上手写并拍照上传)

  • 像从性不好的资料是()A. 由于死亡或者其他原因不能继续试验B. 能按照试验规定要求完成实验C. 重复参加试验D. 由于纳入标准不合格导致选择的研究对象不符合试验要求E. 能完成试验但是不能按照规定要求完成试验

  • 下列说法正确的是()A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差衡量了多个变量的分布C. 协方差和方差的计算方式完全一致D. 方差描述了样本数据的波动程度

  • 可以从最小化每个类簇的方差这一视角来解释K均值聚类的结果,下面对这一视角描述正确的A. 每个样本数据分别归属于与其距离最远的聚类质心所在聚类集合B. 每个簇类的质心累加起来最小C. 最终聚类结果中每个聚类集合中所包含数据呈现出来差异性最大D. 每个簇类的方差累加起来最小

  • 重测信度用重测相关系数来表示,相关系数越趋近于下列哪一数值时,则重测信度越高A. 1B. 0.7C. 2D. 3

  • 设随机变量XY都服从N(0,1),则有()A. X+Y服从正态分布B. X+Y服从x^2分布 C. X^2和Y^2都服从x^2分布 D. (X^2)div (Y^2)服从F分布

  • {15分)常规情况下,下列不属于人口学变量的是A. 民族B. 收入C. 年龄D. 睡眠时间E. 性别

  • 下列哪项属于常见的池化方式。()A. 反向传播B. 最大池化C. 方差池化D. 协方差池化

  • 下列哪项属于常见的池化方式。()A. 协方差池化B. 方差池化C. 反向传播D. 最大池化

  • 下列关于回归分析的描述不正确的是()A. 回归分析模型可分为线性回归模型和非线性回归模型B. 回归分析研究不同变量之间存在的关系()C. 刻画不同变量之间关系的模型统称为线性回归模型D. 回归分析研究单个变量的变化情况

  • 以下几种数据挖掘功能中,〔〕被广泛的用于购物篮分析.A. 关联分析B. 分类和预测C. 聚类分析D. 演变分析

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号