题目
设X_1, X_2, ldots, X_n(n > 2)是来自总体N(mu, sigma^2)的简单随机样本,overline(X)为样本均值,已知T = C(X_1 + X_n - 2overline(X))^2是sigma^2的无偏估计,则常数C必为()A. (1)/(2(n-1))B. (1)/(2(n-2))C. (n)/(2(n-1))D. (n)/(2(n-2))
设$X_1, X_2, \ldots, X_n$($n > 2$)是来自总体$N(\mu, \sigma^2)$的简单随机样本,$\overline{X}$为样本均值,已知$T = C(X_1 + X_n - 2\overline{X})^2$是$\sigma^2$的无偏估计,则常数$C$必为()
A. $\frac{1}{2(n-1)}$
B. $\frac{1}{2(n-2)}$
C. $\frac{n}{2(n-1)}$
D. $\frac{n}{2(n-2)}$
题目解答
答案
C. $\frac{n}{2(n-1)}$
解析
步骤 1:转换表达式
将 $X_1 + X_n - 2\overline{X}$ 转换为: \[ X_1 + X_n - 2\overline{X} = (X_1 - \overline{X}) + (X_n - \overline{X}) \]
步骤 2:计算方差
计算方差: \[ \text{Var}(X_i - \overline{X}) = \frac{n-1}{n} \sigma^2 \quad \text{(对 $i=1$ 和 $i=n$ 均成立)} \]
步骤 3:计算总方差
总方差: \[ \text{Var}(X_1 + X_n - 2\overline{X}) = \frac{2(n-1)}{n} \sigma^2 \]
步骤 4:确定常数$C$
为使 $E(T) = \sigma^2$,解得: \[ C = \frac{\sigma^2}{\frac{2(n-1)}{n} \sigma^2} = \frac{n}{2(n-1)} \]
将 $X_1 + X_n - 2\overline{X}$ 转换为: \[ X_1 + X_n - 2\overline{X} = (X_1 - \overline{X}) + (X_n - \overline{X}) \]
步骤 2:计算方差
计算方差: \[ \text{Var}(X_i - \overline{X}) = \frac{n-1}{n} \sigma^2 \quad \text{(对 $i=1$ 和 $i=n$ 均成立)} \]
步骤 3:计算总方差
总方差: \[ \text{Var}(X_1 + X_n - 2\overline{X}) = \frac{2(n-1)}{n} \sigma^2 \]
步骤 4:确定常数$C$
为使 $E(T) = \sigma^2$,解得: \[ C = \frac{\sigma^2}{\frac{2(n-1)}{n} \sigma^2} = \frac{n}{2(n-1)} \]