题目
2.(2021,I)设(X 1,Y1),(X2,Y2 ),···,(xn,Yn)为来自总体N(μ1,-|||-μ2;σ1^2,σ2^2;ρ)的简单随机样本,令 theta =(mu )_(1)-(mu )_(2), overline (X)=dfrac (1)(n)sum _(i=1)^n(X)_(i), overline (Y)=dfrac (1)(n)sum _(i=1)^n(Y)_(i),-|||-hat (theta )=overline (X)-overline (Y), 则 () .-|||-(A)θ是θ的无偏估计, (hat (theta ))=dfrac ({{sigma )_(1)}^2+({sigma )_(2)}^2}(n)-|||-(B)θ不是θ的无偏估计, (hat (theta ))=dfrac ({{sigma )_(1)}^2+({sigma )_(2)}^2}(n)-|||-(C)θ是θ的无偏估计, (hat (theta ))=dfrac ({{sigma )_(1)}^2+({sigma )_(2)}^2-2rho (sigma )_(1)(sigma )_(2)}(n)-|||-(D)θ不是θ的无偏估计, (hat (theta ))=dfrac ({{sigma )_(1)}^2+({sigma )_(2)}^2-2rho ({sigma )_(1)(sigma )_(2)}}(n)

题目解答
答案

解析
考查要点:本题主要考查二维正态分布下样本均值差的无偏性及方差计算,涉及协方差的处理。
解题核心思路:
- 无偏性:验证$\hat{\theta} = \overline{X} - \overline{Y}$的期望是否等于$\theta = \mu_1 - \mu_2$。
- 方差计算:利用方差性质展开$D(\hat{\theta})$,特别注意$\overline{X}$与$\overline{Y}$的协方差项。
破题关键点:
- 无偏性:样本均值的线性组合保持无偏性。
- 协方差处理:$\overline{X}$与$\overline{Y}$的协方差来源于原始变量$(X_i, Y_i)$的相关性$\rho$。
无偏性验证
- 计算期望:
$E(\hat{\theta}) = E(\overline{X} - \overline{Y}) = E(\overline{X}) - E(\overline{Y}) = \mu_1 - \mu_2 = \theta$
因此,$\hat{\theta}$是$\theta$的无偏估计。
方差计算
-
方差展开:
$D(\hat{\theta}) = D(\overline{X} - \overline{Y}) = D(\overline{X}) + D(\overline{Y}) - 2\text{Cov}(\overline{X}, \overline{Y})$ -
计算各部分:
- $D(\overline{X}) = \dfrac{\sigma_1^2}{n}$,$D(\overline{Y}) = \dfrac{\sigma_2^2}{n}$
- 协方差计算:
$\text{Cov}(\overline{X}, \overline{Y}) = \text{Cov}\left(\dfrac{1}{n}\sum X_i, \dfrac{1}{n}\sum Y_j\right) = \dfrac{1}{n^2} \sum_{i=1}^n \text{Cov}(X_i, Y_i)$
由于$(X_i, Y_i)$服从二维正态分布,$\text{Cov}(X_i, Y_i) = \rho \sigma_1 \sigma_2$,因此:
$\text{Cov}(\overline{X}, \overline{Y}) = \dfrac{1}{n^2} \cdot n \rho \sigma_1 \sigma_2 = \dfrac{\rho \sigma_1 \sigma_2}{n}$
-
代入方差公式:
$D(\hat{\theta}) = \dfrac{\sigma_1^2}{n} + \dfrac{\sigma_2^2}{n} - 2 \cdot \dfrac{\rho \sigma_1 \sigma_2}{n} = \dfrac{\sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2}{n}$
结论:选项(C)正确。