题目
5.设总体X的概率密度函数为-|||-f(x)= ) |x|,|x|lt 1 0,|x|geqslant 1 .-|||-(X1,X2,···,X50)为总体的样本.-|||-试求(1)X的数学期望与方差;(2)E(S^2 );(3)P( |>0.02).

题目解答
答案

解析
步骤 1:计算数学期望E(X)
数学期望E(X)的计算公式为:$E(X) = \int_{-\infty}^{\infty} x f(x) dx$。根据给定的概率密度函数,我们有:
$E(X) = \int_{-1}^{1} x |x| dx = \int_{-1}^{0} x(-x) dx + \int_{0}^{1} x(x) dx = \int_{-1}^{0} -x^2 dx + \int_{0}^{1} x^2 dx$
$= \left[-\frac{x^3}{3}\right]_{-1}^{0} + \left[\frac{x^3}{3}\right]_{0}^{1} = 0 + 0 = 0$
步骤 2:计算方差D(X)
方差D(X)的计算公式为:$D(X) = E(X^2) - [E(X)]^2$。首先计算$E(X^2)$:
$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-1}^{1} x^2 |x| dx = \int_{-1}^{0} x^2(-x) dx + \int_{0}^{1} x^2(x) dx$
$= \int_{-1}^{0} -x^3 dx + \int_{0}^{1} x^3 dx = \left[-\frac{x^4}{4}\right]_{-1}^{0} + \left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
因此,$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{2} - 0^2 = \frac{1}{2}$
步骤 3:计算E(S^2)
样本方差S^2的期望E(S^2)等于总体方差D(X),即$E(S^2) = D(X) = \frac{1}{2}$
步骤 4:计算P(|$\overline{X}$| > 0.02)
根据中心极限定理,样本均值$\overline{X}$的分布近似为正态分布,其均值为E(X) = 0,方差为D(X)/n = 1/2 / 50 = 1/100。因此,$\overline{X}$的分布为$N(0, \frac{1}{100})$。计算P(|$\overline{X}$| > 0.02):
$P(|\overline{X}| > 0.02) = 2P(\overline{X} > 0.02) = 2P(Z > \frac{0.02}{\sqrt{\frac{1}{100}}}) = 2P(Z > 0.2)$
其中Z为标准正态分布变量。查标准正态分布表,得$P(Z > 0.2) = 0.4207$,因此$P(|\overline{X}| > 0.02) = 2 \times 0.4207 = 0.8414$
数学期望E(X)的计算公式为:$E(X) = \int_{-\infty}^{\infty} x f(x) dx$。根据给定的概率密度函数,我们有:
$E(X) = \int_{-1}^{1} x |x| dx = \int_{-1}^{0} x(-x) dx + \int_{0}^{1} x(x) dx = \int_{-1}^{0} -x^2 dx + \int_{0}^{1} x^2 dx$
$= \left[-\frac{x^3}{3}\right]_{-1}^{0} + \left[\frac{x^3}{3}\right]_{0}^{1} = 0 + 0 = 0$
步骤 2:计算方差D(X)
方差D(X)的计算公式为:$D(X) = E(X^2) - [E(X)]^2$。首先计算$E(X^2)$:
$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-1}^{1} x^2 |x| dx = \int_{-1}^{0} x^2(-x) dx + \int_{0}^{1} x^2(x) dx$
$= \int_{-1}^{0} -x^3 dx + \int_{0}^{1} x^3 dx = \left[-\frac{x^4}{4}\right]_{-1}^{0} + \left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
因此,$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{2} - 0^2 = \frac{1}{2}$
步骤 3:计算E(S^2)
样本方差S^2的期望E(S^2)等于总体方差D(X),即$E(S^2) = D(X) = \frac{1}{2}$
步骤 4:计算P(|$\overline{X}$| > 0.02)
根据中心极限定理,样本均值$\overline{X}$的分布近似为正态分布,其均值为E(X) = 0,方差为D(X)/n = 1/2 / 50 = 1/100。因此,$\overline{X}$的分布为$N(0, \frac{1}{100})$。计算P(|$\overline{X}$| > 0.02):
$P(|\overline{X}| > 0.02) = 2P(\overline{X} > 0.02) = 2P(Z > \frac{0.02}{\sqrt{\frac{1}{100}}}) = 2P(Z > 0.2)$
其中Z为标准正态分布变量。查标准正态分布表,得$P(Z > 0.2) = 0.4207$,因此$P(|\overline{X}| > 0.02) = 2 \times 0.4207 = 0.8414$