logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
统计
题目

调换X和Y之后(1)建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/04/10 Time: 11:21Sample: 1970 1994Included observations: 25CoefficientStd. Errort-StatisticProb. X0.6374370.02124230.008460.0000C50.874548.2910586.1360730.0000R-squared0.975095 Mean dependent var298.2000Adjusted R-squared0.974012 S.D. dependent var27.97320S.E. of regression4.509491 Akaike info criterion5.926864Sum squared resid467.7167 Schwarz criterion6.024374Log likelihood-72.08580 Hannan-Quinn cr.ter.5.953909F-statistic90..5078 Durbin-Watson stat0.352762Prob(F-statistic)0.000000给定n=25,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=0.850961,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.850961*Y(-1)Method: Least SquaresDate: 12/04/10 Time: 11:17Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientStd. Errort-StatisticProb. X-0.850961*X(-1)0.5351250.0747937.1547960.0000C13.973344.7894362.9175330.0080R-squared0.699417 Mean dependent var48.03762Adjusted R-squared0.685754 S.D. dependent var4.550930S.E. of regression2.551144 Akaike info criterion4.790616Sum squared resid143.1833 Schwarz criterion4.888787Log likelihood-5..48739 Hannan-Quinn cr.ter.4.816661F-statistic51.19110 Durbin-Watson stat2.377660Prob(F-statistic)0.000000给定n=24,,在的显著水平下,查DW统计表可知,。模型中,因此可以判断模型不存在自相关。所以修正后的模型为:6.5参考解答:(1)建立回归模型,回归结果如下:Dependent Variable: LOG(Y)Method: Least SquaresDate: 05/07/10 Time: 00:17Sample: 1980 2000Included observations: 21CoefficientStd. Errort-StatisticProb. C2.1710410.2410259.0075290.0000LOG(X)0.9510900.03889724.451230.0000R-squared0.969199 Mean dependent var8.039307Adjusted R-squared0.967578 S.D. dependent var0.565486S.E. of regression0.101822 Akaike info criterion-1.640785Sum squared resid0.196987 Schwarz criterion-1.541307Log likelihood19.22825 Hannan-Quinn cr.ter.-1.619196F-statistic597.8626 Durbin-Watson stat1.159788Prob(F-statistic)0.000000给定n=21,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)采用广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=0.400234,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: LOG(Y)-0.400234*LOG(Y(-1))Method: Least SquaresDate: 05/07/10 Time: 00:21Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientStd. Errort-StatisticProb. C1.4770950.2256366.5463720.0000LOG(X)-0.400234*LOG(X(-1))0.9059890.05976715.158710.0000R-squared0.927357 Mean dependent var4.882162Adjusted R-squared0.923321 S.D. dependent var0.344052S.E. of regression0.095271 Akaike info criterion-1.769534Sum squared resid0.163380 Schwarz criterion-1.669961Log likelihood19.69534 Hannan-Quinn cr.ter.-1.750096F-statistic229.7864 Durbin-Watson stat1.441543Prob(F-statistic)0.000000给定n=20,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断广义差分模型中不存在自相关。由差分方程式可以得出:所以修正后的模型为:(3)变换数据后的回归结果如下:Dependent Variable: LOG(Y/Y(-1))Method: Least SquaresDate: 05/07/10 Time: 00:23Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientStd. Errort-StatisticProb. C0.0540470.0133224.0568960.0007LOG(X/X(-1))0.4422240.0660246.6979010.0000R-squared0.713658 Mean dependent var0.091592Adjusted R-squared0.697750 S.D. dependent var0.098311S.E. of regression0.054049 Akaike info criterion-2.903219Sum squared resid0.052583 Schwarz criterion-2.803646Log likelihood31.03219 Hannan-Quinn cr.ter.-2.883781F-statistic4..86188 Durbin-Watson stat1.590363Prob(F-statistic)0.000003给定n=20,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断变化数据后的模型中不存在自相关。Prob(F-statistic)0.000000估计结果如下Se = (2.50.3) (0.0075)t = (-3.765.) (125.3411)R2 = 0.9978,F = 15710.39,d f = 34,DW = 0.5234(2)对样本量为36、一个解释变量的模型、5%显著水平,查DW统计表可知,dL=1.411,dU= 1.525,模型中DW<dL,显然消费模型中有自相关。(3)采用广义差分法由上式可知,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.72855*Y(-1)Method: Least SquaresDate: 05/06/10 Time: 23:11Sample (adjusted): 1961 1995Included observations: 35 after adjustmentsCoefficientStd. Errort-StatisticProb. C-3.7830591.870964-2.0219840.0513X-0.72855*X(-1)0.9484060.01890550.168200.0000R-squared0.987058 Mean dependent var86.40203Adjusted R-squared0.986666 S.D. dependent var26.56943S.E. of regression3.068065 Akaike info criterion5.135417Sum squared resid310.6298 Schwarz criterion5.224294Log likelihood-87.86979 Hannan-Quinn cr.ter.5.166097F-statistic2516.848 Durbin-Watson stat2.097157Prob(F-statistic)0.000000样本容量减少1.,为35,查5%显著水平的DW统计表可知dL = 1.402.dU = 1.519,模型中DW = 2.0972> dU,说明广义差分模型中已无自相关。同时,判定系数R2、t、F统计量均达到理想水平。由差分方程式可以得出:所以最终的消费模型为:由上述模型可知,美国个人实际可支配收入每增加1元,个人实际消费支出平均增加0.9484元。练习题6.2参考解答:(1)模型1中存在自相关,模型2中不存在自相关。(2)通过DW检验可以判定自相关的存在;在模型1.,DW=0.8252,查5%显著水平的DW统计表可知,,,因此模型1存在正自相关;而在模型2中,DW=1.82, 查5%显著水平的DW统计表可知,,,因此模型2不存在自相关。(3)虚假自相关是由模型设定失误所造成的自相关,主要包括遗漏某些重要的解释变量或者模型函数形式不正确,因此在区分虚假自相关和真正自相关是主要从这两个方面来判断,即根据经济意义检查解释变量是否遗漏了重要的变量,或者根据数据的数字特征检验模型形式的设定是否恰当。练习题6.3参考解答:(1)先对数据进行处理,收入-消费模型(个人实际收入与个人实际消费支出)个人实际消费支出=人均生活消费支出/商品零售物价指数*100建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 05/06/10 Time: 23:20Sample: 2001 2019Included observations: 19CoefficientStd. Errort-StatisticProb. X0.6904880.01287753.620680.0000C79.9300412.399196.4463900.0000R-squared0.994122 Mean dependent var70..2747Adjusted R-squared0.993776 S.D. dependent var246.4491S.E. of regression19.44245 Akaike info criterion8.872095Sum squared resid6.26.149 Schwarz criterion8.971510Log likelihood-82.28490 Hannan-Quinn cr.ter.8.888920F-statistic2875.178 Durbin-Watson stat0.574663Prob(F-statistic)0.000000估计结果如下(2)DW=0.575,对样本量为36、一个解释变量的模型、5%显著水平的DW统计表可知,说明误差项存在正自相关。(3)采用广义差分法使用普通最小二乘法估计的估计值,得由上式可知=0.657352,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-0.657352*Y(-1)Method: Least SquaresDate: 05/06/10 Time: 23:25Sample (adjusted): 2002 2019Included observations: 18 after adjustmentsCoefficientStd. Errort-StatisticProb. C35.977618.1035464.4397370.0004X-0.657352*X(-1)0.6686950.02064232.395120.0000R-squared0.984983 Mean dependent var278.1002Adjusted R-squared0.984044 S.D. dependent var105.1781S.E. of regression13.28570 Akaike info criterion8.115693Sum squared resid2824.158 Schwarz criterion8.214623Log likelihood-71.04124 Hannan-Quinn cr.ter.8.129334F-statistic1049.444 Durbin-Watson stat1.830746Prob(F-statistic)0.000000估计结果如下DW=1.830,已知,模型中因此,在广义差分模型中已无自相关。由差分方程式可以得出:(错误)( )

调换X和Y之后(1)建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/04/10 Time: 11:21Sample: 1970 1994Included observations: 25CoefficientSt
d. Errort-StatisticPro
b.  X
0.637437
0.0212423
0.00846
0.0000C5
0.87454
8.291058
6.136073
0.0000R-squared
0.975095    Mean dependent var29
8.2000Adjusted R-squared
0.974012    
S.
D. dependent var2
7.97320
S.
E. of regression
4.509491    Akaike info criterion
5.926864Sum squared resid46
7.7167    Schwarz criterion
6.024374Log likelihood-7
2.08580    Hannan-Quinn c
r.ter.
5.953909F-statistic9
0..5078    Durbin-Watson stat
0.352762Prob(F-statistic)
0.000000给定n=25,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)对模型的修正1)采广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=
0.850961,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-
0.850961*Y(-1)Method: Least SquaresDate: 12/04/10 Time: 11:17Sample (adjusted): 1971 1994Included observations: 24 after adjustmentsCoefficientSt
d. Errort-StatisticPro
b.  X-
0.850961*X(-1)
0.535125
0.074793
7.154796
0.0000C1
3.97334
4.789436
2.917533
0.0080R-squared
0.699417    Mean dependent var4
8.03762Adjusted R-squared
0.685754    
S.
D. dependent var
4.550930
S.
E. of regression
2.551144    Akaike info criterion
4.790616Sum squared resid14
3.1833    Schwarz criterion
4.888787Log likelihood-
5..48739    Hannan-Quinn c
r.ter.
4.816661F-statistic5
1.19110    Durbin-Watson stat
2.377660Prob(F-statistic)
0.000000给定n=24,,在的显著水平下,查DW统计表可知,。模型中,因此可以判断模型不存在自相关。所以修正后的模型为:
6.5参考解答:(1)建立回归模型,回归结果如下:Dependent Variable: LOG(Y)Method: Least SquaresDate: 05/07/10 Time: 00:17Sample: 1980 2000Included observations: 21CoefficientSt
d. Errort-StatisticPro
b.  C
2.171041
0.241025
9.007529
0.0000LOG(X)
0.951090
0.0388972
4.45123
0.0000R-squared
0.969199    Mean dependent var
8.039307Adjusted R-squared
0.967578    
S.
D. dependent var
0.565486
S.
E. of regression
0.101822    Akaike info criterion-
1.640785Sum squared resid
0.196987    Schwarz criterion-
1.541307Log likelihood1
9.22825    Hannan-Quinn c
r.ter.-
1.619196F-statistic59
7.8626    Durbin-Watson stat
1.159788Prob(F-statistic)
0.000000给定n=21,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断模型中存在正自相关。(2)采用广义差分法修正自相关:使用普通最小二乘法估计的估计值,得由上式可知=
0.400234,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: LOG(Y)-
0.400234*LOG(Y(-1))Method: Least SquaresDate: 05/07/10 Time: 00:21Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientSt
d. Errort-StatisticPro
b.  C
1.477095
0.225636
6.546372
0.0000LOG(X)-
0.400234*LOG(X(-1))
0.905989
0.0597671
5.15871
0.0000R-squared
0.927357    Mean dependent var
4.882162Adjusted R-squared
0.923321    
S.
D. dependent var
0.344052
S.
E. of regression
0.095271    Akaike info criterion-
1.769534Sum squared resid
0.163380    Schwarz criterion-
1.669961Log likelihood1
9.69534    Hannan-Quinn c
r.ter.-
1.750096F-statistic22
9.7864    Durbin-Watson stat
1.441543Prob(F-statistic)
0.000000给定n=20,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断广义差分模型中不存在自相关。由差分方程式可以得出:所以修正后的模型为:(3)变换数据后的回归结果如下:Dependent Variable: LOG(Y/Y(-1))Method: Least SquaresDate: 05/07/10 Time: 00:23Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientSt
d. Errort-StatisticPro
b.  C
0.054047
0.013322
4.056896
0.0007LOG(X/X(-1))
0.442224
0.066024
6.697901
0.0000R-squared
0.713658    Mean dependent var
0.091592Adjusted R-squared
0.697750    
S.
D. dependent var
0.098311
S.
E. of regression
0.054049    Akaike info criterion-
2.903219Sum squared resid
0.052583    Schwarz criterion-
2.803646Log likelihood3
1.03219    Hannan-Quinn c
r.ter.-
2.883781F-statistic
4..86188    Durbin-Watson stat
1.590363Prob(F-statistic)
0.000003给定n=20,,在的显著水平下,查DW统计表可知,。模型中,所以可以判断变化数据后的模型中不存在自相关。Prob(F-statistic)
0.000000估计结果如下Se = (
2.5
0.3) (0.0075)t = (-
3.76
5.) (125.3411)R2 =

0.9978,F = 15710.39,d f = 34,DW = 0.5234(2)对样本量为36、一个解释变量的模型、5%显著水平,查DW统计表可知,dL=
1.411,dU= 1.525,模型中DW<dL,显然消费模型中有自相关。(3)采用广义差分法由上式可知,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-
0.72855*Y(-1)Method: Least SquaresDate: 05/06/10 Time: 23:11Sample (adjusted): 1961 1995Included observations: 35 after adjustmentsCoefficientSt
d. Errort-StatisticPro
b.  C-
3.783059
1.870964-
2.021984
0.0513X-
0.72855*X(-1)
0.948406
0.0189055
0.16820
0.0000R-squared
0.987058    Mean dependent var8
6.40203Adjusted R-squared
0.986666    
S.
D. dependent var2
6.56943
S.
E. of regression
3.068065    Akaike info criterion
5.135417Sum squared resid31
0.6298    Schwarz criterion
5.224294Log likelihood-8
7.86979    Hannan-Quinn c
r.ter.
5.166097F-statistic251
6.848    Durbin-Watson stat
2.097157Prob(F-statistic)
0.000000样本容量减少
1.,为35,查5%显著水平的DW统计表可知dL = 1.40
2.dU = 1.519,模型中DW = 2.0972> dU,说明广义差分模型中已无自相关。同时,判定系数R2、t、F统计量均达到理想水平。由差分方程式可以得出:所以最终的消费模型为:由上述模型可知,美国个人实际可支配收入每增加1元,个人实际消费支出平均增加
0.9484元。练习题
6.2参考解答:(1)模型1中存在自相关,模型2中不存在自相关。(2)通过DW检验可以判定自相关的存在;在模型
1.,DW=
0.8252,查5%显著水平的DW统计表可知,,,因此模型1存在正自相关;而在模型2中,DW=1.82, 查5%显著水平的DW统计表可知,,,因此模型2不存在自相关。(3)虚假自相关是由模型设定失误所造成的自相关,主要包括遗漏某些重要的解释变量或者模型函数形式不正确,因此在区分虚假自相关和真正自相关是主要从这两个方面来判断,即根据经济意义检查解释变量是否遗漏了重要的变量,或者根据数据的数字特征检验模型形式的设定是否恰当。练习题
6.3参考解答:(1)先对数据进行处理,收入-消费模型(个人实际收入与个人实际消费支出)个人实际消费支出=人均生活消费支出/商品零售物价指数*100建立回归模型,回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 05/06/10 Time: 23:20Sample: 2001 2019Included observations: 19CoefficientSt
d. Errort-StatisticPro
b.  X
0.690488
0.0128775
3.62068
0.0000C7
9.930041
2.39919
6.446390
0.0000R-squared
0.994122    Mean dependent var7
0..2747Adjusted R-squared
0.993776    
S.
D. dependent var24
6.4491
S.
E. of regression1
9.44245    Akaike info criterion
8.872095Sum squared resid
6.26.149    Schwarz criterion
8.971510Log likelihood-8
2.28490    Hannan-Quinn c
r.ter.
8.888920F-statistic287
5.178    Durbin-Watson stat
0.574663Prob(F-statistic)
0.000000估计结果如下(2)DW=
0.575,对样本量为36、一个解释变量的模型、5%显著水平的DW统计表可知,说明误差项存在正自相关。(3)采用广义差分法使用普通最小二乘法估计的估计值,得由上式可知=
0.657352,对原模型进行广义差分,得到广义差分方程:回归结果如下:Dependent Variable: Y-
0.657352*Y(-1)Method: Least SquaresDate: 05/06/10 Time: 23:25Sample (adjusted): 2002 2019Included observations: 18 after adjustmentsCoefficientSt
d. Errort-StatisticPro
b.  C3
5.97761
8.103546
4.439737
0.0004X-
0.657352*X(-1)
0.668695
0.0206423
2.39512
0.0000R-squared
0.984983    Mean dependent var27
8.1002Adjusted R-squared
0.984044    
S.
D. dependent var10
5.1781
S.
E. of regression1
3.28570    Akaike info criterion
8.115693Sum squared resid282
4.158    Schwarz criterion
8.214623Log likelihood-7
1.04124    Hannan-Quinn c
r.ter.
8.129334F-statistic104
9.444    Durbin-Watson stat
1.830746Prob(F-statistic)
0.000000估计结果如下DW=
1.830,已知,模型中因此,在广义差分模型中已无自相关。由差分方程式可以得出:(错误)( )

题目解答

答案

正确

相关问题

  • 1. 名词解释 假设检验 (请在答题纸上手写并拍照上传)

  • 48皮尔逊相关系数的取值范围为0到正无穷。()A. 错误B. 正确

  • 请你从下表中找出1~100中所有质数.并数一数一共多少个. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  • 下列哪项属于常见的池化方式。()A. 反向传播B. 最大池化C. 方差池化D. 协方差池化

  • 对研究对象制定明确的纳入标准和排除标准,是为了保证样本的A. 可靠性B. 可行性C. 代表性D. 合理性E. 科学性

  • 以下几种数据挖掘功能中,〔〕被广泛的用于购物篮分析.A. 关联分析B. 分类和预测C. 聚类分析D. 演变分析

  • 重测信度用重测相关系数来表示,相关系数越趋近于下列哪一数值时,则重测信度越高A. 1B. 0.7C. 2D. 3

  • 44.2021年,我国人均预期寿命提高到了()。A. 78岁B. 79岁C. 78.2岁D. 79.2岁

  • 下列哪项属于常见的池化方式。()A. 协方差池化B. 方差池化C. 反向传播D. 最大池化

  • 下列说法正确的是()A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差衡量了多个变量的分布C. 协方差和方差的计算方式完全一致D. 方差描述了样本数据的波动程度

  • 假定用于分析的数据包含属性age.数据元组[1]中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:A. 18.3B. 22。6C. 26。8D. 27。9

  • 下列关于回归分析的描述不正确的是()A. 回归分析研究单个变量的变化情况B. 刻画不同变量之间关系的模型统称为线性回归模型C. 回归分析研究不同变量之间存在的关系D. 回归分析模型可分为线性回归模型和非线性回归模型

  • 下列说法正确的是()A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差和方差的计算方式完全一致C. 协方差衡量了多个变量的分布D. 方差描述了样本数据的波动程度

  • 皮尔逊相关系数的取值范围为0到正无穷。()A. 正确B. 错误

  • 下列关于回归分析的描述不正确的是()A. 回归分析模型可分为线性回归模型和非线性回归模型B. 回归分析研究不同变量之间存在的关系()C. 刻画不同变量之间关系的模型统称为线性回归模型D. 回归分析研究单个变量的变化情况

  • 设随机变量XY都服从N(0,1),则有()A. X+Y服从正态分布B. X+Y服从x^2分布 C. X^2和Y^2都服从x^2分布 D. (X^2)div (Y^2)服从F分布

  • {15分)常规情况下,下列不属于人口学变量的是A. 民族B. 收入C. 年龄D. 睡眠时间E. 性别

  • {1.5分)确定研究总体和样本时,不需要考虑A. 立题依据B. 样本量C. 抽样方法D. 目标总体E. 纳入及排除标准

  • 5.聚类分析可以看作是一种非监督的分类。()

  • 可以从最小化每个类簇的方差这一视角来解释K均值聚类的结果,下面对这一视角描述正确的A. 每个样本数据分别归属于与其距离最远的聚类质心所在聚类集合B. 每个簇类的质心累加起来最小C. 最终聚类结果中每个聚类集合中所包含数据呈现出来差异性最大D. 每个簇类的方差累加起来最小

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号