题目
3.如图所示,一个细杆总长为L,单位长度的质量为 rho =(rho )_(0)+ax, 其中ρ0和a为正-|||-常量,则此杆的质心的坐标 _(c)= __ .-|||-x-|||-o L-|||-习题3用图

题目解答
答案

解析
步骤 1:确定质量分布
细杆的单位长度质量为 $\rho ={\rho }_{0}+ax$,其中 $x$ 是从杆的一端到另一端的距离。因此,杆的总质量 $M$ 可以通过积分得到:
$$
M = \int_{0}^{L} \rho(x) dx = \int_{0}^{L} ({\rho }_{0}+ax) dx
$$
步骤 2:计算总质量
计算上述积分,得到总质量 $M$:
$$
M = \int_{0}^{L} ({\rho }_{0}+ax) dx = \left[ {\rho }_{0}x + \frac{1}{2}ax^2 \right]_{0}^{L} = {\rho }_{0}L + \frac{1}{2}aL^2
$$
步骤 3:计算质心坐标
质心坐标 $x_c$ 可以通过积分杆上每一点的质量乘以该点的坐标,然后除以总质量得到:
$$
x_c = \frac{1}{M} \int_{0}^{L} x \rho(x) dx = \frac{1}{M} \int_{0}^{L} x({\rho }_{0}+ax) dx
$$
步骤 4:计算积分
计算上述积分,得到质心坐标 $x_c$:
$$
x_c = \frac{1}{M} \int_{0}^{L} x({\rho }_{0}+ax) dx = \frac{1}{M} \int_{0}^{L} ({\rho }_{0}x + ax^2) dx = \frac{1}{M} \left[ \frac{1}{2}{\rho }_{0}x^2 + \frac{1}{3}ax^3 \right]_{0}^{L} = \frac{1}{M} \left( \frac{1}{2}{\rho }_{0}L^2 + \frac{1}{3}aL^3 \right)
$$
步骤 5:代入总质量
将总质量 $M$ 代入质心坐标 $x_c$ 的表达式中,得到:
$$
x_c = \frac{\frac{1}{2}{\rho }_{0}L^2 + \frac{1}{3}aL^3}{{\rho }_{0}L + \frac{1}{2}aL^2} = \frac{\frac{1}{2}{\rho }_{0}L + \frac{1}{3}aL^2}{{\rho }_{0} + \frac{1}{2}aL} = \frac{(3{\rho }_{0}+2aL)L}{6{\rho }_{0}+3aL}
$$
细杆的单位长度质量为 $\rho ={\rho }_{0}+ax$,其中 $x$ 是从杆的一端到另一端的距离。因此,杆的总质量 $M$ 可以通过积分得到:
$$
M = \int_{0}^{L} \rho(x) dx = \int_{0}^{L} ({\rho }_{0}+ax) dx
$$
步骤 2:计算总质量
计算上述积分,得到总质量 $M$:
$$
M = \int_{0}^{L} ({\rho }_{0}+ax) dx = \left[ {\rho }_{0}x + \frac{1}{2}ax^2 \right]_{0}^{L} = {\rho }_{0}L + \frac{1}{2}aL^2
$$
步骤 3:计算质心坐标
质心坐标 $x_c$ 可以通过积分杆上每一点的质量乘以该点的坐标,然后除以总质量得到:
$$
x_c = \frac{1}{M} \int_{0}^{L} x \rho(x) dx = \frac{1}{M} \int_{0}^{L} x({\rho }_{0}+ax) dx
$$
步骤 4:计算积分
计算上述积分,得到质心坐标 $x_c$:
$$
x_c = \frac{1}{M} \int_{0}^{L} x({\rho }_{0}+ax) dx = \frac{1}{M} \int_{0}^{L} ({\rho }_{0}x + ax^2) dx = \frac{1}{M} \left[ \frac{1}{2}{\rho }_{0}x^2 + \frac{1}{3}ax^3 \right]_{0}^{L} = \frac{1}{M} \left( \frac{1}{2}{\rho }_{0}L^2 + \frac{1}{3}aL^3 \right)
$$
步骤 5:代入总质量
将总质量 $M$ 代入质心坐标 $x_c$ 的表达式中,得到:
$$
x_c = \frac{\frac{1}{2}{\rho }_{0}L^2 + \frac{1}{3}aL^3}{{\rho }_{0}L + \frac{1}{2}aL^2} = \frac{\frac{1}{2}{\rho }_{0}L + \frac{1}{3}aL^2}{{\rho }_{0} + \frac{1}{2}aL} = \frac{(3{\rho }_{0}+2aL)L}{6{\rho }_{0}+3aL}
$$