答:磨损种类:点蚀[1]磨损、胶合磨损、擦伤磨损、粘着磨损、疲劳磨损、冲蚀磨损、腐蚀磨损、磨料磨损。磨损产生机理:1)磨粒磨损[2]机理:微观切削、挤压剥落、疲劳破坏2)粘着磨损机理:通常摩擦表面的实际接触面积只有表观面积的~%。对于重载高速摩擦副,接触峰点的表面压力有时可达5000MPa,并产生1000度以上的瞬现温度。而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点温度便迅速下降,一般局部高温持续时间只有几个毫秒。摩擦表面处于这种状态下,润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点产生粘着,随后在滑动中粘着结点破坏。这种粘着、破坏、再粘着的交替过程就构成粘着磨损。弹性流体动力润滑和流体动压润滑分别适用于什么情况。两个作相对运动物体的摩擦表面,用借助于相对速度而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷, 称为流体动力润滑。 所用的粘性流体可以是液体(如润滑油) ,也可以是气体(如空气等), 相应地称为液体动力润滑和气体动力润滑。流体动力润滑的主要优点是,摩擦力小, 磨损小,并可以缓和振动与冲击。流体动力润滑通常研究的是低副接触受润零件之间的润滑问题,把零件摩擦表面视作刚体,并认为润滑剂的粘度不随压力而改变。可是在齿轮传动[3]、 滚动轴承、 凸轮[4]机构等高 副接触中, 两摩擦表面之间接触压力很大,摩擦表面会出现不能忽略的局部弹性变形。同时, 在较高压力下,润滑剂的粘度也将随压力发生变化。弹性流体动力润滑理论是研究在相互滚动或伴有滑动的滚动条件下, 两弹性物体间的流体动力润滑膜的力学性质,把计算在油膜压力下摩擦表面的变形的弹性方程、表述润滑剂粘度与压力间关系的粘压方程与流体动力润滑的主要方程结合起来,以求解油膜压力分布、润滑膜厚度分布等问题。表面的几何形状误差类型
答:磨损种类:点蚀[1]磨损、胶合磨损、擦伤磨损、粘着磨损、疲劳磨损、冲蚀磨损、腐蚀磨损、磨料磨损。
磨损产生机理:
1)磨粒磨损[2]机理:微观切削、挤压剥落、疲劳破坏
2)粘着磨损机理:通常摩擦表面的实际接触面积只有表观面积的~%。对于重载高速摩擦副,接触峰点的表面压力有时可达5000MPa,并产生1000度以上的瞬现温度。而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点温度便迅速下降,一般局部高温持续时间只有几个毫秒。摩擦表面处于这种状态下,润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点产生粘着,随后在滑动中粘着结点破坏。这种粘着、破坏、再粘着的交替过程就构成粘着磨损。
弹性流体动力润滑和流体动压润滑分别适用于什么情况。
两个作相对运动物体的摩擦表面,用借助于相对速度而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷, 称为流体动力润滑。 所用的粘性流体可以是液体(如润滑油) ,也可以是气体(如空气等), 相应地称为液体动力润滑和气体动力润滑。流体动力润滑的主要优点是,摩擦力小, 磨损小,并可以缓和振动与冲击。
流体动力润滑通常研究的是低副接触受润零件之间的润滑问题,把零件摩擦表面视作刚体,并认为润滑剂的粘度不随压力而改变。可是在齿轮传动[3]、 滚动轴承、 凸轮[4]机构等高 副接触中, 两摩擦表面之间接触压力很大,摩擦表面会出现不能忽略的局部弹性变形。同时, 在较高压力下,润滑剂的粘度也将随压力发生变化。弹性流体动力润滑理论是研究在相互滚动或伴有滑动的滚动条件下, 两弹性物体间的流体动力润滑膜的力学性质,把计算在油膜压力下摩擦表面的变形的弹性方程、表述润滑剂粘度与压力间关系的粘压方程与流体动力润滑的主要方程结合起来,以求解油膜压力分布、润滑膜厚度分布等问题。
表面的几何形状误差类型
题目解答
答案
答:机械零件的几何形状误差主要有以下三种类型:
(1)微观几何形状误差(2)表面波纹度(3)表面粗糙度也叫微观粗糙度
(2)
赫兹接触
答:就是指圆弧形物体的接触,如圆柱体、球体等曲面物体的接触。
微动腐蚀[5]磨损
答:两接触表面间没有宏观的相对运动,由于振幅很小的相对滑动产生的磨损称为微动磨损。如果微动磨损过程中,两表面的化学反应起主要作用时,则可称为微动腐蚀磨损。
弹性流体动压润滑
答:考虑了弹性变形及压粘变化对流体动压润滑的影响称为弹性流体动压润滑
固体润滑剂
答:为防止与保护相互运动的表面不受损害,以及减少摩擦副的摩擦与磨损而在运动表面使用的粉末状或薄膜状的固体物质,即叫固体润滑剂。
强制润滑[6]
答:用油泵将润滑油等输送到需润滑的机件部位的方法叫强制润滑。。