题目
设X1,X2,···,Xn与Y 1,Y2,···,Ym分别是来自N(μ1,σ^2)与N(μ2,σ^2)的两-|||-个独立样本,试求μ1,μ2,σ^2的极大似然估计。

题目解答
答案


解析
步骤 1:构造似然函数
由于X1,X2,···,Xn与Y1,Y2,···,Ym分别是来自N(μ1,σ^2)与N(μ2,σ^2)的两个独立样本,因此,似然函数为:
$L(\mu_1, \mu_2, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i - \mu_1)^2}{2\sigma^2}} \times \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(Y_j - \mu_2)^2}{2\sigma^2}}$
步骤 2:对数似然函数
对似然函数取对数,得到对数似然函数:
$l(\mu_1, \mu_2, \sigma^2) = -\frac{n+m}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu_1)^2 - \frac{1}{2\sigma^2} \sum_{j=1}^{m} (Y_j - \mu_2)^2$
步骤 3:求导并解似然方程
对μ1、μ2、σ^2求导,得到似然方程:
$\frac{\partial l}{\partial \mu_1} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu_1) = 0$
$\frac{\partial l}{\partial \mu_2} = \frac{1}{\sigma^2} \sum_{j=1}^{m} (Y_j - \mu_2) = 0$
$\frac{\partial l}{\partial \sigma^2} = -\frac{n+m}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \left( \sum_{i=1}^{n} (X_i - \mu_1)^2 + \sum_{j=1}^{m} (Y_j - \mu_2)^2 \right) = 0$
步骤 4:求解似然方程
解上述似然方程,得到μ1、μ2、σ^2的极大似然估计:
$\hat{\mu_1} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$
$\hat{\mu_2} = \frac{1}{m} \sum_{j=1}^{m} Y_j = \overline{Y}$
$\hat{\sigma^2} = \frac{1}{n+m} \left( \sum_{i=1}^{n} (X_i - \overline{X})^2 + \sum_{j=1}^{m} (Y_j - \overline{Y})^2 \right)$
由于X1,X2,···,Xn与Y1,Y2,···,Ym分别是来自N(μ1,σ^2)与N(μ2,σ^2)的两个独立样本,因此,似然函数为:
$L(\mu_1, \mu_2, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i - \mu_1)^2}{2\sigma^2}} \times \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(Y_j - \mu_2)^2}{2\sigma^2}}$
步骤 2:对数似然函数
对似然函数取对数,得到对数似然函数:
$l(\mu_1, \mu_2, \sigma^2) = -\frac{n+m}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu_1)^2 - \frac{1}{2\sigma^2} \sum_{j=1}^{m} (Y_j - \mu_2)^2$
步骤 3:求导并解似然方程
对μ1、μ2、σ^2求导,得到似然方程:
$\frac{\partial l}{\partial \mu_1} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu_1) = 0$
$\frac{\partial l}{\partial \mu_2} = \frac{1}{\sigma^2} \sum_{j=1}^{m} (Y_j - \mu_2) = 0$
$\frac{\partial l}{\partial \sigma^2} = -\frac{n+m}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \left( \sum_{i=1}^{n} (X_i - \mu_1)^2 + \sum_{j=1}^{m} (Y_j - \mu_2)^2 \right) = 0$
步骤 4:求解似然方程
解上述似然方程,得到μ1、μ2、σ^2的极大似然估计:
$\hat{\mu_1} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$
$\hat{\mu_2} = \frac{1}{m} \sum_{j=1}^{m} Y_j = \overline{Y}$
$\hat{\sigma^2} = \frac{1}{n+m} \left( \sum_{i=1}^{n} (X_i - \overline{X})^2 + \sum_{j=1}^{m} (Y_j - \overline{Y})^2 \right)$