题目
5-9 曲柄OA长r,在平面内绕O轴转动,如图所示。杆AB通过固定于点N的套筒-|||-与曲柄OA铰接于点A。设 varphi =omega t, 杆AB长 l=2r 求点B的运动方程速度和加速度。-|||-y↑-|||-A-|||-O φ N-|||-x-|||-1-|||-B

题目解答
答案

解析
步骤 1:确定点A的坐标
由于曲柄OA绕O轴转动,设曲柄OA的长度为r,角速度为$\omega$,则点A的坐标为:
$x_A = r\cos(\omega t)$
$y_A = r\sin(\omega t)$
步骤 2:确定点B的坐标
由于杆AB的长度为l=2r,且杆AB通过固定于点N的套筒与曲柄OA铰接于点A,设点N的坐标为(0, 0),则点B的坐标为:
$x_B = x_A + l\sin(\frac{\omega t}{2}) = r\cos(\omega t) + 2r\sin(\frac{\omega t}{2})$
$y_B = y_A - l\cos(\frac{\omega t}{2}) = r\sin(\omega t) - 2r\cos(\frac{\omega t}{2})$
步骤 3:求点B的速度
点B的速度为点B的坐标对时间t的导数,即:
$v_x = \frac{dx_B}{dt} = -r\omega\sin(\omega t) + r\omega\cos(\frac{\omega t}{2})$
$v_y = \frac{dy_B}{dt} = r\omega\cos(\omega t) + r\omega\sin(\frac{\omega t}{2})$
点B的速度大小为:
$v = \sqrt{v_x^2 + v_y^2} = \omega\sqrt{r^2 + \frac{l^2}{4} - rl\sin(\frac{\omega t}{2})}$
步骤 4:求点B的加速度
点B的加速度为点B的速度对时间t的导数,即:
$a_x = \frac{dv_x}{dt} = -r\omega^2\cos(\omega t) - \frac{r\omega^2}{2}\sin(\frac{\omega t}{2})$
$a_y = \frac{dv_y}{dt} = -r\omega^2\sin(\omega t) + \frac{r\omega^2}{2}\cos(\frac{\omega t}{2})$
点B的加速度大小为:
$a = \sqrt{a_x^2 + a_y^2} = \omega^2\sqrt{r^2 + \frac{l^2}{16} - \frac{rl}{2}\sin(\frac{\omega t}{2})}$
由于曲柄OA绕O轴转动,设曲柄OA的长度为r,角速度为$\omega$,则点A的坐标为:
$x_A = r\cos(\omega t)$
$y_A = r\sin(\omega t)$
步骤 2:确定点B的坐标
由于杆AB的长度为l=2r,且杆AB通过固定于点N的套筒与曲柄OA铰接于点A,设点N的坐标为(0, 0),则点B的坐标为:
$x_B = x_A + l\sin(\frac{\omega t}{2}) = r\cos(\omega t) + 2r\sin(\frac{\omega t}{2})$
$y_B = y_A - l\cos(\frac{\omega t}{2}) = r\sin(\omega t) - 2r\cos(\frac{\omega t}{2})$
步骤 3:求点B的速度
点B的速度为点B的坐标对时间t的导数,即:
$v_x = \frac{dx_B}{dt} = -r\omega\sin(\omega t) + r\omega\cos(\frac{\omega t}{2})$
$v_y = \frac{dy_B}{dt} = r\omega\cos(\omega t) + r\omega\sin(\frac{\omega t}{2})$
点B的速度大小为:
$v = \sqrt{v_x^2 + v_y^2} = \omega\sqrt{r^2 + \frac{l^2}{4} - rl\sin(\frac{\omega t}{2})}$
步骤 4:求点B的加速度
点B的加速度为点B的速度对时间t的导数,即:
$a_x = \frac{dv_x}{dt} = -r\omega^2\cos(\omega t) - \frac{r\omega^2}{2}\sin(\frac{\omega t}{2})$
$a_y = \frac{dv_y}{dt} = -r\omega^2\sin(\omega t) + \frac{r\omega^2}{2}\cos(\frac{\omega t}{2})$
点B的加速度大小为:
$a = \sqrt{a_x^2 + a_y^2} = \omega^2\sqrt{r^2 + \frac{l^2}{16} - \frac{rl}{2}\sin(\frac{\omega t}{2})}$