题目
22.设随机变量X1,X2,X3相互独立,其中X1与X2均服从标准正态分布,X3的概率分布为P(X3=0)=P(X3=1)=1/2,Y=X3X1+(1-X3)X2。(1)求二维随机变量(X1,Y)的分布函数,结果用标准正态分布函数Φ(x)表示。(2)证明随机变量Y服从标准正态分布。
22.
设随机变量X1,X2,X3相互独立,其中X1与X2均服从标准正态分布,X3的概率分布为P{X3=0}=P{X3=1}=1/2,Y=X3X1+(1-X3)X2。
(1)求二维随机变量(X1,Y)的分布函数,结果用标准正态分布函数Φ(x)表示。
(2)证明随机变量Y服从标准正态分布。
题目解答
答案
正确答案:
您的答案:
本题解析:
解析
步骤 1:求二维随机变量(X1,Y)的分布函数
根据题目条件,Y = X3X1 + (1 - X3)X2,其中X3的概率分布为P{X3=0}=P{X3=1}=1/2。因此,Y的取值依赖于X3的取值。当X3=0时,Y=X2;当X3=1时,Y=X1。因此,二维随机变量(X1,Y)的分布函数可以表示为:
$F(x,y)=P({X}_{1}\leqslant x,Y\leqslant y)$
$=P\{ {X}_{1}\leqslant {x}_{2}{X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant {y}_{2}{X}_{3}=0\} +P({X}_{1}\leqslant {x}_{2}{X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant {y}_{2}{X}_{3}=1\}$
$=P\{ {X}_{1}\leqslant {x}_{1}{X}_{2}\leqslant {y}_{1}{X}_{3}=0\} +P({X}_{1}\leqslant {x}_{1}{X}_{1}\leqslant {y}_{1}{X}_{3}=1\}$
当$x\leqslant y$时,$P\{ {X}_{1}\leqslant {x}_{1}{X}_{2}\leqslant {y}_{1}{X}_{3}=1\} =\dfrac {1}{2}P\{ {X}_{1}\leqslant x\} =\dfrac {1}{2}\phi (x)$
当$x\gt y$时,$P\{ {X}_{1}\leqslant {x}_{1}{X}_{1}\leqslant {y}_{1}{X}_{3}=1\} =\dfrac {1}{2}P\{ {X}_{2}\leqslant y\} =\dfrac {1}{2}\phi (y)$
因此,二维随机变量(X1,Y)的分布函数为:
$F(x,y)=\left \{ \begin{matrix} \dfrac {1}{2}\phi (y)+\dfrac {1}{2}\phi (x),x\leqslant y\\ \dfrac {1}{2}\phi (x)+\dfrac {1}{2}\phi (y),x\gt y\end{matrix} \right.$
步骤 2:证明随机变量Y服从标准正态分布
$F_{Y}(y)=P\{ Y\leqslant y\} =P\{ {X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y\}$
$=\dfrac {1}{2}P({X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y|{X}_{3}=0)+\dfrac {1}{2}P({X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y|{X}_{3}=1)$
$=\dfrac {1}{2}P\{ {X}_{2}\leqslant y|{X}_{3}=0\} +\dfrac {1}{2}P\{ {X}_{1}\leqslant y|{X}_{3}=1\}$
$=\dfrac {1}{2}\phi (y)+\dfrac {1}{2}\phi (y)=\phi (y)$
因此,随机变量Y服从标准正态分布。
根据题目条件,Y = X3X1 + (1 - X3)X2,其中X3的概率分布为P{X3=0}=P{X3=1}=1/2。因此,Y的取值依赖于X3的取值。当X3=0时,Y=X2;当X3=1时,Y=X1。因此,二维随机变量(X1,Y)的分布函数可以表示为:
$F(x,y)=P({X}_{1}\leqslant x,Y\leqslant y)$
$=P\{ {X}_{1}\leqslant {x}_{2}{X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant {y}_{2}{X}_{3}=0\} +P({X}_{1}\leqslant {x}_{2}{X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant {y}_{2}{X}_{3}=1\}$
$=P\{ {X}_{1}\leqslant {x}_{1}{X}_{2}\leqslant {y}_{1}{X}_{3}=0\} +P({X}_{1}\leqslant {x}_{1}{X}_{1}\leqslant {y}_{1}{X}_{3}=1\}$
当$x\leqslant y$时,$P\{ {X}_{1}\leqslant {x}_{1}{X}_{2}\leqslant {y}_{1}{X}_{3}=1\} =\dfrac {1}{2}P\{ {X}_{1}\leqslant x\} =\dfrac {1}{2}\phi (x)$
当$x\gt y$时,$P\{ {X}_{1}\leqslant {x}_{1}{X}_{1}\leqslant {y}_{1}{X}_{3}=1\} =\dfrac {1}{2}P\{ {X}_{2}\leqslant y\} =\dfrac {1}{2}\phi (y)$
因此,二维随机变量(X1,Y)的分布函数为:
$F(x,y)=\left \{ \begin{matrix} \dfrac {1}{2}\phi (y)+\dfrac {1}{2}\phi (x),x\leqslant y\\ \dfrac {1}{2}\phi (x)+\dfrac {1}{2}\phi (y),x\gt y\end{matrix} \right.$
步骤 2:证明随机变量Y服从标准正态分布
$F_{Y}(y)=P\{ Y\leqslant y\} =P\{ {X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y\}$
$=\dfrac {1}{2}P({X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y|{X}_{3}=0)+\dfrac {1}{2}P({X}_{3}({X}_{1}-{X}_{2})+{X}_{2}\leqslant y|{X}_{3}=1)$
$=\dfrac {1}{2}P\{ {X}_{2}\leqslant y|{X}_{3}=0\} +\dfrac {1}{2}P\{ {X}_{1}\leqslant y|{X}_{3}=1\}$
$=\dfrac {1}{2}\phi (y)+\dfrac {1}{2}\phi (y)=\phi (y)$
因此,随机变量Y服从标准正态分布。