logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
统计
题目

68.设总体X服从指数分布,其概率密度为 (x,lambda )= ) lambda (e)^-xxgeqslant 0 0 xlt 0 . 其中 lambda gt 0 为未知-|||-参数,x1,x2,···,xn为样本,求λ的极大似然估计。

题目解答

答案

解析

步骤 1:写出似然函数
似然函数是样本观测值的概率密度函数的乘积,对于独立同分布的样本,似然函数为:
$$L(\lambda) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$$
步骤 2:对似然函数取对数
为了简化计算,我们对似然函数取对数,得到对数似然函数:
$$\ln L(\lambda) = \ln \left( \prod_{i=1}^{n} \lambda e^{-\lambda x_i} \right) = \sum_{i=1}^{n} \ln (\lambda e^{-\lambda x_i}) = n \ln \lambda - \lambda \sum_{i=1}^{n} x_i$$
步骤 3:求对数似然函数的导数
为了找到极大似然估计,我们需要对对数似然函数关于参数 $\lambda$ 求导,并令导数等于零:
$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{d}{d\lambda} (n \ln \lambda - \lambda \sum_{i=1}^{n} x_i) = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i$$
步骤 4:求解极大似然估计
令导数等于零,解出 $\lambda$:
$$\frac{n}{\lambda} - \sum_{i=1}^{n} x_i = 0$$
$$\frac{n}{\lambda} = \sum_{i=1}^{n} x_i$$
$$\lambda = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\bar{x}}$$
其中 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 是样本均值。

相关问题

  • 5.聚类分析可以看作是一种非监督的分类。()

  • 从总体中抽取的、对总体有一定代表性的一部分个体称为()A. 总体B. 部分C. 样本D. 取样

  • 区群谬误是用个体调查(分析)单位做资料收集与分析,却用集群乃至总体调查(分析)单位做结论。()A. 正确B. 错误

  • 1. 名词解释 假设检验 (请在答题纸上手写并拍照上传)

  • 下列说法不正确的是() A. 协方差数值上等于各个数据与样本方差之差的平方和B. 协方差和方差的计算完全一致C. 协方差描述了两个变量之间的相关程度D. 方差描述了样本数据的波动程度

  • 下列说法正确的是() A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差和方差的计算方式完全一致C. 协方差衡量了多个变量的分布D. 方差描述了样本数据的波动程度

  • 48皮尔逊相关系数的取值范围为0到正无穷。() A. 错误B. 正确

  • 决策树算法常用的划分准则包括: A. 信息增益B. 基尼指数C. 误差平方和D. 均方差

  • 下列关于回归分析的描述不正确的是() A. 回归分析研究单个变量的变化情况B. 刻画不同变量之间关系的模型统称为线性回归模型C. 回归分析研究不同变量之间存在的关系D. 回归分析模型可分为线性回归模型和非线性回归模型

  • 关于样本中某一变量的综合描述叫( )A. 统计值B. 平均值C. 估计值D. 参数值

  • 下列哪项属于常见的池化方式。() A. 反向传播B. 方差池化C. 协方差池化D. 最大池化

  • 下列哪项属于常见的池化方式。() A. 协方差池化B. 方差池化C. 反向传播D. 最大池化

  • 以下几种数据挖掘功能中,〔〕被广泛的用于购物篮分析.A. 关联分析B. 分类和预测C. 聚类分析D. 演变分析

  • 可以从最小化每个类簇的方差这一视角来解释K均值聚类的结果,下面对这一视角描述正确的 A. 每个样本数据分别归属于与其距离最远的聚类质心所在聚类集合B. 每个簇类的质心累加起来最小C. 最终聚类结果中每个聚类集合中所包含数据呈现出来差异性最大D. 每个簇类的方差累加起来最小

  • 假定用于分析的数据包含属性age.数据元组[1]中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:A. 18.3B. 22。6C. 26。8D. 27。9

  • 聚类分析的常见应用领域不包括( )数据分析图像处理客户分割发现关联购买行为

  • 下列哪项属于常见的池化方式。() A. 反向传播B. 最大池化C. 方差池化D. 协方差池化

  • 皮尔逊相关系数的取值范围为0到正无穷。() A. 正确B. 错误

  • 下列关于回归分析的描述不正确的是() A. 回归分析模型可分为线性回归模型和非线性回归模型B. 回归分析研究不同变量之间存在的关系()C. 刻画不同变量之间关系的模型统称为线性回归模型D. 回归分析研究单个变量的变化情况

  • 下列说法正确的是() A. 方差数值上等于各个数据与样本方差之差的平方和之平均数B. 协方差衡量了多个变量的分布C. 协方差和方差的计算方式完全一致D. 方差描述了样本数据的波动程度

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市天河区黄村大观公园路10号3N2
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号