题目
设总体X服从参数为 lambda (lambda gt 0) 的泊松分布,X1,X2,···, _(n)(ngeqslant 2)-|||-为来自该总体的简单随机样本,则对于统计量 _(1)=dfrac (1)(n)sum _(i=1)^n(X)_(i) _(2)=-|||-dfrac (1)(n-1)sum _(i=1)^n-1(X)_(i)+dfrac (1)(n)(X)_(n) ,有 () .-|||-(A) ((F)_(1))gt E((F)_(2)) , ((T)_(1))gt D((T)_(2))-|||-(B) ((T)_(1))gt E((T)_(2)) , ((T)_(1))lt D((T)_(2))-|||-(C) ((T)_(1))lt E((T)_(2)) , ((T)_(1))gt D((T)_(2))-|||-(D) ((T)_(1))lt E((T)_(2)) , ((T)_(1))lt D((T)_(2))

题目解答
答案

解析
步骤 1:计算 $E(T_1)$
由于 $X_i$ 是来自参数为 $\lambda$ 的泊松分布的简单随机样本,所以 $E(X_i) = \lambda$。因此,$E(T_1) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n} \cdot n \cdot \lambda = \lambda$。
步骤 2:计算 $E(T_2)$
$E(T_2) = E\left(\frac{1}{n-1}\sum_{i=1}^{n-1}X_i + \frac{1}{n}X_n\right) = \frac{1}{n-1}\sum_{i=1}^{n-1}E(X_i) + \frac{1}{n}E(X_n) = \frac{1}{n-1} \cdot (n-1) \cdot \lambda + \frac{1}{n} \cdot \lambda = \lambda + \frac{\lambda}{n} = \frac{n+1}{n}\lambda$。
步骤 3:计算 $D(T_1)$
$D(X_i) = \lambda$,因此 $D(T_1) = D\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}D(X_i) = \frac{1}{n^2} \cdot n \cdot \lambda = \frac{\lambda}{n}$。
步骤 4:计算 $D(T_2)$
$D(T_2) = D\left(\frac{1}{n-1}\sum_{i=1}^{n-1}X_i + \frac{1}{n}X_n\right) = \frac{1}{(n-1)^2}\sum_{i=1}^{n-1}D(X_i) + \frac{1}{n^2}D(X_n) = \frac{1}{(n-1)^2} \cdot (n-1) \cdot \lambda + \frac{1}{n^2} \cdot \lambda = \frac{\lambda}{n-1} + \frac{\lambda}{n^2} = \frac{\lambda(n-1) + \lambda}{n(n-1)} = \frac{\lambda n}{n(n-1)} = \frac{\lambda}{n-1}$。
步骤 5:比较 $E(T_1)$ 和 $E(T_2)$
由于 $E(T_1) = \lambda$,$E(T_2) = \frac{n+1}{n}\lambda$,所以 $E(T_1) < E(T_2)$。
步骤 6:比较 $D(T_1)$ 和 $D(T_2)$
由于 $D(T_1) = \frac{\lambda}{n}$,$D(T_2) = \frac{\lambda}{n-1}$,所以 $D(T_1) < D(T_2)$。
由于 $X_i$ 是来自参数为 $\lambda$ 的泊松分布的简单随机样本,所以 $E(X_i) = \lambda$。因此,$E(T_1) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n} \cdot n \cdot \lambda = \lambda$。
步骤 2:计算 $E(T_2)$
$E(T_2) = E\left(\frac{1}{n-1}\sum_{i=1}^{n-1}X_i + \frac{1}{n}X_n\right) = \frac{1}{n-1}\sum_{i=1}^{n-1}E(X_i) + \frac{1}{n}E(X_n) = \frac{1}{n-1} \cdot (n-1) \cdot \lambda + \frac{1}{n} \cdot \lambda = \lambda + \frac{\lambda}{n} = \frac{n+1}{n}\lambda$。
步骤 3:计算 $D(T_1)$
$D(X_i) = \lambda$,因此 $D(T_1) = D\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}D(X_i) = \frac{1}{n^2} \cdot n \cdot \lambda = \frac{\lambda}{n}$。
步骤 4:计算 $D(T_2)$
$D(T_2) = D\left(\frac{1}{n-1}\sum_{i=1}^{n-1}X_i + \frac{1}{n}X_n\right) = \frac{1}{(n-1)^2}\sum_{i=1}^{n-1}D(X_i) + \frac{1}{n^2}D(X_n) = \frac{1}{(n-1)^2} \cdot (n-1) \cdot \lambda + \frac{1}{n^2} \cdot \lambda = \frac{\lambda}{n-1} + \frac{\lambda}{n^2} = \frac{\lambda(n-1) + \lambda}{n(n-1)} = \frac{\lambda n}{n(n-1)} = \frac{\lambda}{n-1}$。
步骤 5:比较 $E(T_1)$ 和 $E(T_2)$
由于 $E(T_1) = \lambda$,$E(T_2) = \frac{n+1}{n}\lambda$,所以 $E(T_1) < E(T_2)$。
步骤 6:比较 $D(T_1)$ 和 $D(T_2)$
由于 $D(T_1) = \frac{\lambda}{n}$,$D(T_2) = \frac{\lambda}{n-1}$,所以 $D(T_1) < D(T_2)$。