题目
10-17 一半径为R的"无限长"圆柱形带电体,其电荷体密度为 rho =Ar(rleqslant -|||-R),式中A为常数,试求:-|||-(1)圆柱体内、外各点场强大小的分布;-|||-(2)选距离轴线的距离为 (tgt R) 处为电势零点,计算圆柱体-|||-内、外各点的电势分布.

题目解答
答案

解析
步骤 1:确定高斯面
取一个半径为r、高为h的圆柱形高斯面,其轴线与带电圆柱体的轴线重合。高斯面上各点的场强大小为E,方向垂直于高斯面。
步骤 2:计算高斯面内的总电荷量
- 当 $r \leq R$ 时,高斯面内的电荷量为:
\[
Q_{\text{内}} = \int_{0}^{r} \rho \, dV = \int_{0}^{r} Ar \cdot 2\pi r h \, dr = 2\pi Ah \int_{0}^{r} r^2 \, dr = \frac{2\pi Ah r^3}{3}
\]
- 当 $r > R$ 时,高斯面内的电荷量为:
\[
Q_{\text{内}} = \int_{0}^{R} \rho \, dV = \int_{0}^{R} Ar \cdot 2\pi r h \, dr = 2\pi Ah \int_{0}^{R} r^2 \, dr = \frac{2\pi Ah R^3}{3}
\]
步骤 3:应用高斯定理
- 当 $r \leq R$ 时,由高斯定理得:
\[
2\pi rhE = \frac{Q_{\text{内}}}{\varepsilon_0} = \frac{\frac{2\pi Ah r^3}{3}}{\varepsilon_0} = \frac{2\pi Ah r^3}{3\varepsilon_0}
\]
解得:
\[
E = \frac{A r^2}{3\varepsilon_0}
\]
- 当 $r > R$ 时,由高斯定理得:
\[
2\pi rhE = \frac{Q_{\text{内}}}{\varepsilon_0} = \frac{\frac{2\pi Ah R^3}{3}}{\varepsilon_0} = \frac{2\pi Ah R^3}{3\varepsilon_0}
\]
解得:
\[
E = \frac{A R^3}{3\varepsilon_0 r}
\]
步骤 4:计算电势分布
- 当 $r \leq R$ 时,电势为:
\[
U = \int_{r}^{l} E \, dr = \int_{r}^{R} \frac{A r^2}{3\varepsilon_0} \, dr + \int_{R}^{l} \frac{A R^3}{3\varepsilon_0 r} \, dr
\]
\[
= \frac{A}{3\varepsilon_0} \left( \frac{R^3}{3} - \frac{r^3}{3} \right) + \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{R}
\]
\[
= \frac{A}{9\varepsilon_0} (R^3 - r^3) + \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{R}
\]
- 当 $r > R$ 时,电势为:
\[
U = \int_{r}^{l} E \, dr = \int_{r}^{l} \frac{A R^3}{3\varepsilon_0 r} \, dr = \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{r}
\]
取一个半径为r、高为h的圆柱形高斯面,其轴线与带电圆柱体的轴线重合。高斯面上各点的场强大小为E,方向垂直于高斯面。
步骤 2:计算高斯面内的总电荷量
- 当 $r \leq R$ 时,高斯面内的电荷量为:
\[
Q_{\text{内}} = \int_{0}^{r} \rho \, dV = \int_{0}^{r} Ar \cdot 2\pi r h \, dr = 2\pi Ah \int_{0}^{r} r^2 \, dr = \frac{2\pi Ah r^3}{3}
\]
- 当 $r > R$ 时,高斯面内的电荷量为:
\[
Q_{\text{内}} = \int_{0}^{R} \rho \, dV = \int_{0}^{R} Ar \cdot 2\pi r h \, dr = 2\pi Ah \int_{0}^{R} r^2 \, dr = \frac{2\pi Ah R^3}{3}
\]
步骤 3:应用高斯定理
- 当 $r \leq R$ 时,由高斯定理得:
\[
2\pi rhE = \frac{Q_{\text{内}}}{\varepsilon_0} = \frac{\frac{2\pi Ah r^3}{3}}{\varepsilon_0} = \frac{2\pi Ah r^3}{3\varepsilon_0}
\]
解得:
\[
E = \frac{A r^2}{3\varepsilon_0}
\]
- 当 $r > R$ 时,由高斯定理得:
\[
2\pi rhE = \frac{Q_{\text{内}}}{\varepsilon_0} = \frac{\frac{2\pi Ah R^3}{3}}{\varepsilon_0} = \frac{2\pi Ah R^3}{3\varepsilon_0}
\]
解得:
\[
E = \frac{A R^3}{3\varepsilon_0 r}
\]
步骤 4:计算电势分布
- 当 $r \leq R$ 时,电势为:
\[
U = \int_{r}^{l} E \, dr = \int_{r}^{R} \frac{A r^2}{3\varepsilon_0} \, dr + \int_{R}^{l} \frac{A R^3}{3\varepsilon_0 r} \, dr
\]
\[
= \frac{A}{3\varepsilon_0} \left( \frac{R^3}{3} - \frac{r^3}{3} \right) + \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{R}
\]
\[
= \frac{A}{9\varepsilon_0} (R^3 - r^3) + \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{R}
\]
- 当 $r > R$ 时,电势为:
\[
U = \int_{r}^{l} E \, dr = \int_{r}^{l} \frac{A R^3}{3\varepsilon_0 r} \, dr = \frac{A R^3}{3\varepsilon_0} \ln \frac{l}{r}
\]