题目
3-14 矩形截面的柱体受到顶部的集中力 sqrt (2)F 和力矩M的作用(图 3-15 ),不计体力,-|||-试用应力函数-|||-(1)=A(y)^2+Bxy+Cx(y)^3+D(y)^3-|||-求解其应力分量。-|||-M √2F-|||-45°-|||-0-|||-x-|||-b/2 b/2-|||-q h-|||-,-|||-y+ (hgt b,0)=1)-|||-图 3-15

题目解答
答案

解析
步骤 1:确定应力函数
应力函数 $\phi =A{y}^{2}+Bxy+Cx{y}^{3}+D{y}^{3}$,其中 $A$、$B$、$C$、$D$ 为待定系数。
步骤 2:计算应力分量
应力分量由应力函数的二阶偏导数给出,即:
${\sigma }_{x}=-\dfrac {\partial ^{2}\phi }{\partial {y}^{2}}$
${\sigma }_{y}=-\dfrac {\partial ^{2}\phi }{\partial {x}^{2}}$
${\tau }_{xy}=\dfrac {\partial ^{2}\phi }{\partial x\partial y}$
步骤 3:计算应力分量的具体表达式
根据应力函数 $\phi =A{y}^{2}+Bxy+Cx{y}^{3}+D{y}^{3}$,计算应力分量:
${\sigma }_{x}=-\dfrac {\partial ^{2}\phi }{\partial {y}^{2}}=-\dfrac {\partial }{\partial y}(2Ay+3D{y}^{2})=-2A-6Dy$
${\sigma }_{y}=-\dfrac {\partial ^{2}\phi }{\partial {x}^{2}}=-\dfrac {\partial }{\partial x}(B+C{y}^{3})=0$
${\tau }_{xy}=\dfrac {\partial ^{2}\phi }{\partial x\partial y}=\dfrac {\partial }{\partial x}(B+3Cy{y}^{2})=B+3Cy{y}^{2}$
步骤 4:确定待定系数
根据边界条件,确定待定系数 $A$、$B$、$C$、$D$。由于题目中没有给出具体的边界条件,我们假设边界条件为:
在 $y=0$ 时,${\sigma }_{x}=-\dfrac {F}{b}$,${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})$
在 $y=b$ 时,${\sigma }_{x}=-\dfrac {F}{b}+\dfrac {12}{{b}^{2}}(a-\dfrac {F}{b})xy-\dfrac {12M}{{b}^{3}}y$
在 $x=0$ 时,${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b}){y}^{2}$
步骤 5:代入边界条件求解
代入边界条件,求解待定系数 $A$、$B$、$C$、$D$,得到:
$A=-\dfrac {F}{b}$
$B=\dfrac {1}{2}(a-\dfrac {3F}{b})$
$C=-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b})$
$D=-\dfrac {2M}{{b}^{3}}$
步骤 6:代入待定系数求解应力分量
代入待定系数,得到应力分量的具体表达式:
${\sigma }_{x}=-\dfrac {F}{b}+\dfrac {12}{{b}^{2}}(a-\dfrac {F}{b})xy-\dfrac {12M}{{b}^{3}}y$
${\sigma }_{y}=0$
${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b}){y}^{2}$
应力函数 $\phi =A{y}^{2}+Bxy+Cx{y}^{3}+D{y}^{3}$,其中 $A$、$B$、$C$、$D$ 为待定系数。
步骤 2:计算应力分量
应力分量由应力函数的二阶偏导数给出,即:
${\sigma }_{x}=-\dfrac {\partial ^{2}\phi }{\partial {y}^{2}}$
${\sigma }_{y}=-\dfrac {\partial ^{2}\phi }{\partial {x}^{2}}$
${\tau }_{xy}=\dfrac {\partial ^{2}\phi }{\partial x\partial y}$
步骤 3:计算应力分量的具体表达式
根据应力函数 $\phi =A{y}^{2}+Bxy+Cx{y}^{3}+D{y}^{3}$,计算应力分量:
${\sigma }_{x}=-\dfrac {\partial ^{2}\phi }{\partial {y}^{2}}=-\dfrac {\partial }{\partial y}(2Ay+3D{y}^{2})=-2A-6Dy$
${\sigma }_{y}=-\dfrac {\partial ^{2}\phi }{\partial {x}^{2}}=-\dfrac {\partial }{\partial x}(B+C{y}^{3})=0$
${\tau }_{xy}=\dfrac {\partial ^{2}\phi }{\partial x\partial y}=\dfrac {\partial }{\partial x}(B+3Cy{y}^{2})=B+3Cy{y}^{2}$
步骤 4:确定待定系数
根据边界条件,确定待定系数 $A$、$B$、$C$、$D$。由于题目中没有给出具体的边界条件,我们假设边界条件为:
在 $y=0$ 时,${\sigma }_{x}=-\dfrac {F}{b}$,${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})$
在 $y=b$ 时,${\sigma }_{x}=-\dfrac {F}{b}+\dfrac {12}{{b}^{2}}(a-\dfrac {F}{b})xy-\dfrac {12M}{{b}^{3}}y$
在 $x=0$ 时,${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b}){y}^{2}$
步骤 5:代入边界条件求解
代入边界条件,求解待定系数 $A$、$B$、$C$、$D$,得到:
$A=-\dfrac {F}{b}$
$B=\dfrac {1}{2}(a-\dfrac {3F}{b})$
$C=-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b})$
$D=-\dfrac {2M}{{b}^{3}}$
步骤 6:代入待定系数求解应力分量
代入待定系数,得到应力分量的具体表达式:
${\sigma }_{x}=-\dfrac {F}{b}+\dfrac {12}{{b}^{2}}(a-\dfrac {F}{b})xy-\dfrac {12M}{{b}^{3}}y$
${\sigma }_{y}=0$
${\tau }_{xy}=\dfrac {1}{2}(a-\dfrac {3F}{b})-\dfrac {6}{{b}^{2}}(a-\dfrac {F}{b}){y}^{2}$