题目
设球形电容器极板上的电荷量不变,若将两极板的间距缩小一半(内球半径(R)_(1)不变,外球半径(R)_(2)变小),试问缩小后的电容器能量与原来的能量之比为多少?
设球形电容器极板上的电荷量不变,若将两极板的间距缩小一半(内球半径${R}_{1}$不变,外球半径${R}_{2}$变小),试问缩小后的电容器能量与原来的能量之比为多少?
题目解答
答案
解析
步骤 1:计算原始电容器的能量
原始电容器的电容量为 $C=\dfrac {4\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}{{R}_{2}-{R}_{1}}$。根据电容器储存能量的公式,原始电容器的能量为 ${W}_{原始}=\dfrac {1}{2}\dfrac {{Q}^{2}}{C}=\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}$。
步骤 2:计算缩小后电容器的能量
缩小后,两极板的间距缩小一半,即 ${R}_{2}'-{R}_{1}=\dfrac {1}{2}({R}_{2}-{R}_{1})$,则 ${R}_{2}'=\dfrac {1}{2}({R}_{1}+{R}_{2})$。缩小后电容器的电容量为 $C'=\dfrac {4\pi {\varepsilon }_{0}{R}_{1}{R}_{2}'}{{R}_{2}'-{R}_{1}}$。根据电容器储存能量的公式,缩小后电容器的能量为 ${W}_{缩小}=\dfrac {1}{2}\dfrac {{Q}^{2}}{C'}=\dfrac {({R}_{2}'-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}'}=\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}\dfrac {1}{2}({R}_{1}+{R}_{2})}$。
步骤 3:计算缩小后的电容器能量与原来的能量之比
缩小后的电容器能量与原来的能量之比为 $\dfrac {{W}_{缩小}}{{W}_{原始}}=\dfrac {\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}\dfrac {1}{2}({R}_{1}+{R}_{2})}}{\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}}=\dfrac {{R}_{2}}{{R}_{1}+{R}_{2}}$。
原始电容器的电容量为 $C=\dfrac {4\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}{{R}_{2}-{R}_{1}}$。根据电容器储存能量的公式,原始电容器的能量为 ${W}_{原始}=\dfrac {1}{2}\dfrac {{Q}^{2}}{C}=\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}$。
步骤 2:计算缩小后电容器的能量
缩小后,两极板的间距缩小一半,即 ${R}_{2}'-{R}_{1}=\dfrac {1}{2}({R}_{2}-{R}_{1})$,则 ${R}_{2}'=\dfrac {1}{2}({R}_{1}+{R}_{2})$。缩小后电容器的电容量为 $C'=\dfrac {4\pi {\varepsilon }_{0}{R}_{1}{R}_{2}'}{{R}_{2}'-{R}_{1}}$。根据电容器储存能量的公式,缩小后电容器的能量为 ${W}_{缩小}=\dfrac {1}{2}\dfrac {{Q}^{2}}{C'}=\dfrac {({R}_{2}'-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}'}=\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}\dfrac {1}{2}({R}_{1}+{R}_{2})}$。
步骤 3:计算缩小后的电容器能量与原来的能量之比
缩小后的电容器能量与原来的能量之比为 $\dfrac {{W}_{缩小}}{{W}_{原始}}=\dfrac {\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}\dfrac {1}{2}({R}_{1}+{R}_{2})}}{\dfrac {({R}_{2}-{R}_{1}){Q}^{2}}{8\pi {\varepsilon }_{0}{R}_{1}{R}_{2}}}=\dfrac {{R}_{2}}{{R}_{1}+{R}_{2}}$。