五、问答题参考答案1.1)将万向传动装置传来的发动机的转矩传给驱动车轮,由主减速器[1]、差速器[2]、半轴等承担。2)实现降速增扭,由主减速器实现。3)实现两侧驱动轮的差速运动,由差速器实现。2.主减速器的主动齿轮→从动齿轮→差速器壳→行星齿轮轴[3]→行星齿轮→左、右半轴齿轮→左、右半轴→左、右驱动轮。3.1)增大转矩,降低转速。2)当发动机纵置时,改变转矩的旋转方向[4]。4.1)螺旋[5]锥齿轮不发生根切的最小齿数比直齿齿轮的齿数少,因此,①在同样传动比的情况下,采用螺旋锥齿轮的主减速器的结构就比较紧凑,使汽车的通过性能提高;②在同样主减速器结构尺寸的情况下,采用螺旋锥齿轮的主减速器,则可以获得较大传动比,提高其降速增扭能力。2)螺旋锥齿轮传动[6]还具有运转平稳、噪声低等优点,所以目前主减速器中的锥齿轮多采用螺旋锥齿轮而不用直齿圆锥齿轮。5.优点:1)传动平稳。2)轮齿的弯曲强度和接触强度高。3)主动锥齿轮可相对于从动锥齿轮向下偏移,在保证一定离地间隙的情况下,降低了主动齿轮和传动轴的位置,整车重心下降,汽车行驶的平稳性提高。缺点:齿面间的相对滑移量大,压力大,油膜易被破坏。使用注意事项:必须添加具有防刮伤添加剂[7]的齿轮油,以减少摩擦,提高效率。6.1)具有两挡传动比的主减速器叫做双速主减速器。2)双级主减速器[8]是由两个齿轮副所组成,进行两次降速,主减速器的传动比只有一个,而且是固定不变的。然而双速主减速器输出的传动比有两个,根据汽车行驶情况,通过驾驶员操纵来改变主减速器的传动比。3)采用双速主减速器的目的是提高运输车辆的动力性和经济性。7.第一级锥齿轮副位于主减速器壳中,第二级传动齿轮副位于驱动轮的近旁,这种特殊形式的双级主减速器称为轮边减速器。优点:1)驱动桥[9]中主减速器的尺寸减小,保证了足够的离地间隙。2)增大了主减速器的传动比。3)半轴和差速器中各零部件所承受的转矩减少,使它们的尺寸减小,结构紧凑,使用寿命延长。缺点:结构复杂,制造成本高。8.1)差速器有轮间差速器,轴间差速器和抗滑差速器三种2)轮间差速器的作用:汽车直线行驶或转向时,能使两侧驱动轮有不同旋转角速度,以保证车轮纯滚动,而无滑磨轴间差速器的作用:使多轴驱动汽车中的两驱动桥上的四个驱动轮,不论是在直线行驶或转弯行驶中,都可以有不同的旋转角速度,并且都能和地面做纯滚动而无滑磨。抗滑差速器的作用:当左、右或前、后驱动轮中的某一驱动轮打滑时,由差速器传来的转矩大部分或全部传给不打滑的驱动轮,用以推动汽车继续行驶。9.结构:该差速器由差速器壳、圆锥行星齿轮、行星齿轮轴(十字轴)和圆锥半轴齿轮等构成。l)差速器壳从中间剖分成两部分,剖分面通过十字轴各轴颈的中心线,每个剖分面上均有相间90度四个座孔,两部分通过螺栓固紧在一起,主减速器的从动齿轮用铆钉或螺栓固定在差速器壳左半部的凸缘上。2)十字轴的四个轴颈嵌装在差速器壳的相应的座孔内,十字轴的侧面铣成平面以便容纳润滑油。3)四个圆锥行星齿轮分别浮套在十字轴的四个轴颈上,为了保证润滑,轮齿间钻有油孔,每个行星齿轮均与两个直齿圆锥半轴齿轮相互啮合,行星齿轮的背面和差速器壳相应位置的内表面均做成球面,并在二者之间装着软钢的球面垫片,以减少磨损并保证行星齿轮对正中心,使其与半轴齿轮正确啮合。4)半轴齿轮的轴颈分别支承在差速器壳相应左右座孔中,并借花键与半轴相连。为减少齿轮和壳的磨损,在半轴齿轮和差速器壳之间装着软钢的平垫片。差速原理:如15所示,差速器壳3与行星齿轮轴5连成一体,形成行星架,因它又与主减速器的从动齿轮6固连,故为主动件,设其角速度为ω0。;半轴齿轮1和2为从动件,其角速度为ω1和ω2。A、B两点分别为行星齿轮4与两半轴齿轮的啮合点,行星齿轮的中心点为C,A、B、C点到差速器旋转轴线的距离均为r。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(15b),其值为ω0r。于是ω0=ω1=ω2,即差速器不起差速作用,两半轴角速度等于差速器壳3的角速度。当行星齿轮除公转外,还绕本身的轴5以角速度自转时,啮合点A的圆周速度为ω1r=ω0r+ω4r4,啮合点B的圆周速度为ω2r=ω0r-ω4r4。于是ω1r+ω2r=(ω0r+ω4r4)+(ω0r-ω4r4)即ω1+ω2=2ω0若角速度以每分钟转数表示,则n1+n2=2n0此即两半轴齿轮直径相等的对称式锥齿轮差速器的运动特性方程式。它表明,左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此,在汽车转弯行驶或其他行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。10. 1)运动特性方程式为:n1+n2=2n02)它说明了:(1)左右两侧半轴齿轮(或驱动轮)的转速之和等于差速器壳转速的两倍。借此两侧驱动轮可以顺利转弯,与地面做纯滚动。2)任何一侧半轴齿轮(或驱动车轮)转速为零时,另一侧半轴齿轮的转速为差速器壳转速的2倍。3)当差速器壳转速为零时,若某一侧驱动轮向前转动,则另一侧驱动轮必然向后转动,二者转速的绝对值相等。11.1)对称式锥齿轮差速器的运动特性方程为n1+n2=2n0,其中n1,n2为左、右两半轴转速;n0为差速器壳(即传动轴)的转速。从此式可以看出:当n0=0时,则n1=-n2。当汽车用中央制动器[10]制动时,则传动轴的转速等于零,即n0=0。由运动特性方程知n1=-n2,即此时两侧驱动轮的转速相等,但方向相反,使汽车出现原地旋转的趋势,但由于车轮与地面间的摩擦阻力及车轮制动器的作用,使其没有原地旋转,而出现汽车跑偏的现象。2)由运动特性方程n1+n2=2n0知,当n1=0时,则n2=2n0,所以在汽车行驶中,—侧驱动轮的转速为零时,则另一侧驱动轮的转速为差速器壳转速的2倍,所以这一侧驱动轮飞速旋转。12.在不考虑差速器的内摩擦力矩MT的情况下,无论左、右驱动轮的转速是否相等,差速器总是把扭矩平均分配给两驱动车轮。若考虑差速器的内摩擦力矩MT时,分配给转速较慢的驱动车轮的转矩大,分配给转速较快的驱动轮转矩较小,二者差值等于MT。13.当汽车的一个驱动车轮接触到泥泞或冰雪路面时,即使另一车轮是在好路面上,往往汽车仍不能前进,此时在泥泞路面上的车轮原地滑转,雨在好路面上车轮静止不动。这是因为,在泥泞路面上车轮与路面之间附着力很小,路面只能对半轴作用很小的反作用转矩,虽然另一车轮与好路面间的附着力较大,但因对称式锥齿轮差速器平均分配转矩的特点,使这一侧车轮分配到的转矩只能与传到滑转的驱动轮上的很小的转矩相等,以致总的牵引力不足以克服行驶阻力,汽车便不能前进。14.结构:托森差速器由空心轴、差速器外壳[11]、后轴蜗杆、前轴蜗杆、蜗轮轴和蜗轮等组成。空心轴和差速器外壳通过花键相连而一同转动。蜗轮通过蜗轮轴固定在差速器壳上,三对蜗轮分别与前轴蜗杆和后轴蜗杆相啮合,每个蜗轮上固定有两个圆柱直齿轮。与前、后轴蜗杆相啮合的蜗轮彼此逼过直齿圆柱齿轮相啮合,前轴蜗秤和驱动前桥的差速器齿轮轴为一体,后轴蜗杆和驱动后桥的驱动轴凸缘盘为一体。防滑原理:当汽车驱动时,来自发动机驱动力通过空心轴传至差速器外壳,差速器外壳通过蜗轮轴传到蜗轮,再传到蜗杆,前轴蜗杆通过差速器齿轮轴将驱动力传至前桥,后轴蜗杆通过驱动轴凸缘盘将驱动力传给后桥,从而实现前后驱动桥的驱动牵引作用。当汽车转向时,前、后驱动轴出现转速差,通过啮合的直齿圆柱齿轮相对转动,使一轴转速加快,另一轴转速下降,实现差速作用,差速器可使转速低的轴比转速[12]高的轴分配得到的驱动转矩大,即附着力大的轴比附着力小的轴得到的驱动转矩大。可见,差速器内的速度平衡是通过直齿圆柱齿轮来完成的。15.首先,为使半轴和车轮不致被向外的侧向力拉出,该轴承必须能承受向外的轴向力;其次,在差速器行星齿轮轴的中部浮套着止推块,半轴内端正好能顶靠在止推块的平面上,因而不致在朝内的侧向力作用下向内窜动。16.作用:1)支承并保护减速器、差速器、半轴等。2)固定驱动轮。3)支承车架及其上的各个总成。4)承受并传递车轮传来的路面反力和力矩。分为两类:1)整体式桥壳[13]:又分为整体铸造、中段铸造压人钢管和钢板冲压焊接等型式;2)分段式桥壳:桥壳分为两段,由螺栓联结成一体。优缺点:1)整体式桥壳:整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上,但其加工困难。2)分段式桥壳:分段式桥壳比整体式桥壳易于铸造,加工简便,但维护不便。当拆检主减速器时,必须把整个驱动桥从汽车上拆卸下来,目前已很少采用。17.驱动桥壳应有足够的强度和刚度,质量小,并便于主减速器的拆装和调整。故其结构形式在满足使用要求的前提下,要尽可能便于制造。________
五、问答题参考答案
1.1)将万向传动装置传来的发动机的转矩传给驱动车轮,由主减速器[1]、差速器[2]、半轴等承担。2)实现降速增扭,由主减速器实现。3)实现两侧驱动轮的差速运动,由差速器实现。2.主减速器的主动齿轮→从动齿轮→差速器壳→行星齿轮轴[3]→行星齿轮→左、右半轴齿轮→左、右半轴→左、右驱动轮。3.1)增大转矩,降低转速。2)当发动机纵置时,改变转矩的旋转方向[4]。4.1)螺旋[5]锥齿轮不发生根切的最小齿数比直齿齿轮的齿数少,因此,①在同样传动比的情况下,采用螺旋锥齿轮的主减速器的结构就比较紧凑,使汽车的通过性能提高;②在同样主减速器结构尺寸的情况下,采用螺旋锥齿轮的主减速器,则可以获得较大传动比,提高其降速增扭能力。2)螺旋锥齿轮传动[6]还具有运转平稳、噪声低等优点,所以目前主减速器中的锥齿轮多采用螺旋锥齿轮而不用直齿圆锥齿轮。5.优点:1)传动平稳。2)轮齿的弯曲强度和接触强度高。3)主动锥齿轮可相对于从动锥齿轮向下偏移,在保证一定离地间隙的情况下,降低了主动齿轮和传动轴的位置,整车重心下降,汽车行驶的平稳性提高。缺点:齿面间的相对滑移量大,压力大,油膜易被破坏。使用注意事项:必须添加具有防刮伤添加剂[7]的齿轮油,以减少摩擦,提高效率。6.1)具有两挡传动比的主减速器叫做双速主减速器。2)双级主减速器[8]是由两个齿轮副所组成,进行两次降速,主减速器的传动比只有一个,而且是固定不变的。然而双速主减速器输出的传动比有两个,根据汽车行驶情况,通过驾驶员操纵来改变主减速器的传动比。3)采用双速主减速器的目的是提高运输车辆的动力性和经济性。7.第一级锥齿轮副位于主减速器壳中,第二级传动齿轮副位于驱动轮的近旁,这种特殊形式的双级主减速器称为轮边减速器。优点:1)驱动桥[9]中主减速器的尺寸减小,保证了足够的离地间隙。2)增大了主减速器的传动比。3)半轴和差速器中各零部件所承受的转矩减少,使它们的尺寸减小,结构紧凑,使用寿命延长。缺点:结构复杂,制造成本高。8.1)差速器有轮间差速器,轴间差速器和抗滑差速器三种2)轮间差速器的作用:汽车直线行驶或转向时,能使两侧驱动轮有不同旋转角速度,以保证车轮纯滚动,而无滑磨轴间差速器的作用:使多轴驱动汽车中的两驱动桥上的四个驱动轮,不论是在直线行驶或转弯行驶中,都可以有不同的旋转角速度,并且都能和地面做纯滚动而无滑磨。抗滑差速器的作用:当左、右或前、后驱动轮中的某一驱动轮打滑时,由差速器传来的转矩大部分或全部传给不打滑的驱动轮,用以推动汽车继续行驶。9.结构:该差速器由差速器壳、圆锥行星齿轮、行星齿轮轴(十字轴)和圆锥半轴齿轮等构成。l)差速器壳从中间剖分成两部分,剖分面通过十字轴各轴颈的中心线,每个剖分面上均有相间90度四个座孔,两部分通过螺栓固紧在一起,主减速器的从动齿轮用铆钉或螺栓固定在差速器壳左半部的凸缘上。2)十字轴的四个轴颈嵌装在差速器壳的相应的座孔内,十字轴的侧面铣成平面以便容纳润滑油。3)四个圆锥行星齿轮分别浮套在十字轴的四个轴颈上,为了保证润滑,轮齿间钻有油孔,每个行星齿轮均与两个直齿圆锥半轴齿轮相互啮合,行星齿轮的背面和差速器壳相应位置的内表面均做成球面,并在二者之间装着软钢的球面垫片,以减少磨损并保证行星齿轮对正中心,使其与半轴齿轮正确啮合。4)半轴齿轮的轴颈分别支承在差速器壳相应左右座孔中,并借花键与半轴相连。为减少齿轮和壳的磨损,在半轴齿轮和差速器壳之间装着软钢的平垫片。差速原理:如15所示,差速器壳3与行星齿轮轴5连成一体,形成行星架,因它又与主减速器的从动齿轮6固连,故为主动件,设其角速度为ω0。;半轴齿轮1和2为从动件,其角速度为ω1和ω2。A、B两点分别为行星齿轮4与两半轴齿轮的啮合点,行星齿轮的中心点为C,A、B、C点到差速器旋转轴线的距离均为r。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(15b),其值为ω0r。于是ω0=ω1=ω2,即差速器不起差速作用,两半轴角速度等于差速器壳3的角速度。当行星齿轮除公转外,还绕本身的轴5以角速度自转时,啮合点A的圆周速度为ω1r=ω0r+ω4r4,啮合点B的圆周速度为ω2r=ω0r-ω4r4。于是ω1r+ω2r=(ω0r+ω4r4)+(ω0r-ω4r4)即ω1+ω2=2ω0若角速度以每分钟转数表示,则n1+n2=2n0此即两半轴齿轮直径相等的对称式锥齿轮差速器的运动特性方程式。它表明,左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此,在汽车转弯行驶或其他行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。10. 1)运动特性方程式为:n1+n2=2n02)它说明了:(1)左右两侧半轴齿轮(或驱动轮)的转速之和等于差速器壳转速的两倍。借此两侧驱动轮可以顺利转弯,与地面做纯滚动。2)任何一侧半轴齿轮(或驱动车轮)转速为零时,另一侧半轴齿轮的转速为差速器壳转速的2倍。3)当差速器壳转速为零时,若某一侧驱动轮向前转动,则另一侧驱动轮必然向后转动,二者转速的绝对值相等。11.1)对称式锥齿轮差速器的运动特性方程为n1+n2=2n0,其中n1,n2为左、右两半轴转速;n0为差速器壳(即传动轴)的转速。从此式可以看出:当n0=0时,则n1=-n2。当汽车用中央制动器[10]制动时,则传动轴的转速等于零,即n0=0。由运动特性方程知n1=-n2,即此时两侧驱动轮的转速相等,但方向相反,使汽车出现原地旋转的趋势,但由于车轮与地面间的摩擦阻力及车轮制动器的作用,使其没有原地旋转,而出现汽车跑偏的现象。2)由运动特性方程n1+n2=2n0知,当n1=0时,则n2=2n0,所以在汽车行驶中,—侧驱动轮的转速为零时,则另一侧驱动轮的转速为差速器壳转速的2倍,所以这一侧驱动轮飞速旋转。12.在不考虑差速器的内摩擦力矩MT的情况下,无论左、右驱动轮的转速是否相等,差速器总是把扭矩平均分配给两驱动车轮。若考虑差速器的内摩擦力矩MT时,分配给转速较慢的驱动车轮的转矩大,分配给转速较快的驱动轮转矩较小,二者差值等于MT。13.当汽车的一个驱动车轮接触到泥泞或冰雪路面时,即使另一车轮是在好路面上,往往汽车仍不能前进,此时在泥泞路面上的车轮原地滑转,雨在好路面上车轮静止不动。这是因为,在泥泞路面上车轮与路面之间附着力很小,路面只能对半轴作用很小的反作用转矩,虽然另一车轮与好路面间的附着力较大,但因对称式锥齿轮差速器平均分配转矩的特点,使这一侧车轮分配到的转矩只能与传到滑转的驱动轮上的很小的转矩相等,以致总的牵引力不足以克服行驶阻力,汽车便不能前进。14.结构:托森差速器由空心轴、差速器外壳[11]、后轴蜗杆、前轴蜗杆、蜗轮轴和蜗轮等组成。空心轴和差速器外壳通过花键相连而一同转动。蜗轮通过蜗轮轴固定在差速器壳上,三对蜗轮分别与前轴蜗杆和后轴蜗杆相啮合,每个蜗轮上固定有两个圆柱直齿轮。与前、后轴蜗杆相啮合的蜗轮彼此逼过直齿圆柱齿轮相啮合,前轴蜗秤和驱动前桥的差速器齿轮轴为一体,后轴蜗杆和驱动后桥的驱动轴凸缘盘为一体。防滑原理:当汽车驱动时,来自发动机驱动力通过空心轴传至差速器外壳,差速器外壳通过蜗轮轴传到蜗轮,再传到蜗杆,前轴蜗杆通过差速器齿轮轴将驱动力传至前桥,后轴蜗杆通过驱动轴凸缘盘将驱动力传给后桥,从而实现前后驱动桥的驱动牵引作用。当汽车转向时,前、后驱动轴出现转速差,通过啮合的直齿圆柱齿轮相对转动,使一轴转速加快,另一轴转速下降,实现差速作用,差速器可使转速低的轴比转速[12]高的轴分配得到的驱动转矩大,即附着力大的轴比附着力小的轴得到的驱动转矩大。可见,差速器内的速度平衡是通过直齿圆柱齿轮来完成的。15.首先,为使半轴和车轮不致被向外的侧向力拉出,该轴承必须能承受向外的轴向力;其次,在差速器行星齿轮轴的中部浮套着止推块,半轴内端正好能顶靠在止推块的平面上,因而不致在朝内的侧向力作用下向内窜动。16.作用:1)支承并保护减速器、差速器、半轴等。2)固定驱动轮。3)支承车架及其上的各个总成。4)承受并传递车轮传来的路面反力和力矩。分为两类:1)整体式桥壳[13]:又分为整体铸造、中段铸造压人钢管和钢板冲压焊接等型式;2)分段式桥壳:桥壳分为两段,由螺栓联结成一体。优缺点:1)整体式桥壳:整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上,但其加工困难。2)分段式桥壳:分段式桥壳比整体式桥壳易于铸造,加工简便,但维护不便。当拆检主减速器时,必须把整个驱动桥从汽车上拆卸下来,目前已很少采用。17.驱动桥壳应有足够的强度和刚度,质量小,并便于主减速器的拆装和调整。故其结构形式在满足使用要求的前提下,要尽可能便于制造。
________
题目解答
答案
行驶系概述
解析
题目主要围绕汽车驱动桥的结构、功能及原理展开,包括主减速器、差速器、半轴、桥壳等部件的作用、类型、工作原理及特性等内容,考察对汽车行驶系中驱动桥相关知识的掌握。