logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
生物
题目

写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1]表3-1 氨基酸的简写符号名称三字母符号单字母符号名称三字母符号单字母符号丙氨酸(alanine)AlaA亮氨酸(leucine)LeuL精氨酸(arginine)ArgR赖氨酸(lysine)LysK天冬酰氨(asparagines)AsnN甲硫氨酸(蛋氨酸)(methionine)Met M天冬氨酸(aspartic acid)AspD苯丙氨酸(phenylalanine)PheF半胱氨酸(cysteine)CysC脯氨酸(praline)ProP谷氨酰氨(glutamine)GlnQ丝氨酸(serine)SerS谷氨酸(glutamic acid)GluE苏氨酸(threonine)ThrT甘氨酸(glycine)GlyG色氨酸(tryptophan)TrpW组氨酸(histidine)HisH酪氨酸(tyrosine)TyrY异亮氨酸(isoleucine)IleI缬氨酸(valine)ValVAsn和/或AspAsxBGln和/或GluGlsZ⒋如何理解基因与蛋白质的共线性?RNA的拼接 、剪辑与再编码对共线性概念有何影响?

写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1]表3-1 氨基酸的简写符号名称三字母符号单字母符号名称三字母符号单字母符号丙氨酸(alanine)AlaA亮氨酸(leucine)LeuL精氨酸(arginine)ArgR赖氨酸(lysine)LysK天冬酰氨(asparagines)AsnN甲硫氨酸(蛋氨酸)(methionine)Met M天冬氨酸(aspartic acid)AspD苯丙氨酸(phenylalanine)PheF半胱氨酸(cysteine)CysC脯氨酸(praline)ProP谷氨酰氨(glutamine)GlnQ丝氨酸(serine)SerS谷氨酸(glutamic acid)GluE苏氨酸(threonine)ThrT甘氨酸(glycine)GlyG色氨酸(tryptophan)TrpW组氨酸(histidine)HisH酪氨酸(tyrosine)TyrY异亮氨酸(isoleucine)IleI缬氨酸(valine)ValVAsn和/或AspAsxBGln和/或GluGlsZ⒋如何理解基因与蛋白质的共线性?RNA的拼接 、剪辑与再编码对共线性概念有何影响?

题目解答

答案

答:按照“中心法则”,基因中DNA的组成顺序决定了转录后RNA的组成顺序,RNA的组成顺序决定了翻译成的蛋白质的组成顺序,这就是基因与蛋白质的共线性关系。

RNA的拼接 、剪辑与再编码可能会改变基因携带的遗传信息的表达,产生新的遗传信息,纠正译码环节的一些错误,是对基因与蛋白质的共线性关系的进展和补充。

⒌遗传密码是如何破译的?

答:第一个用实验给遗传密码以确切解答的是德国诞生的美国生物化学家尼伦贝格(,1927—)。1961年他和另一名德国科学家马太(Heinrich Matthaei)在美国国家卫生研究院的实验室内发觉了苯丙氨酸的密码是RNA上的尿嘧啶(UUU)。他们在用大肠杆菌的无细胞提取液研究蛋白质的生物合成问题时发觉:当向那个提取液中加进核酸,则合成了蛋白质;当用由单一的尿嘧啶组成的核酸长链加进那个提取液中,则产生了由单一苯丙氨酸组成的多肽长链。那个结果当即震动了科学界。可是测定其他氨基酸的密码需要各类各样的碱基组合,而那时这种组归并非是很容易患到的,它需要一种多核苷酸磷酸化酶。美国另一名西班牙血统的生物化学家奥乔亚(Ochoa,Severo,1905—)于1955年发觉了多核苷酸磷酸化酶(PNP酶)帮忙了尼伦贝格合成了同聚核苷酸——多聚U(PolyU)(奥乔亚因发觉此酶而取得1959年诺贝尔生理学或医学奖)。当他将多聚U作为模板加入到无细胞体系中时,那就是只有加有标记苯丙氨酸所产生的那一试管蛋白质沉淀具有放射性。而加其他标记氨基酸的各管则均无放射性进入沉淀。于是,第一个密码便被破译出来,即UUU是苯丙氨酸的密码子。用一样的方式以其他多聚核苷酸作为模板,又测出CCC是脯氨酸的密码子,AAA是赖氨酸的密码子。多聚G的氨基酸密码子那时用此法测按时碰到困难,未能测出。

在取得第一阶段冲破性功效以后,尼伦贝格用混合的核苷酸制备人工合成的mRNA模板,别离测试其作用。

用2种或3种不同的核苷酸制备mRNA模板时,PNP酶合成的产物都是杂聚物,其中核苷酸的顺序是随机的,无法预测。但各类三联体出现的相对概率则是能够推算出来的。在测定了各类标记氨基酸参入蛋白质的量以后,将其相对参入量和三联体出现的概率加以比较,即可明白每种三联体相对应的是那一种氨基酸。

此法的应用有局限性,密码子中不同核苷酸的比例固然能够推测出来,可是它们的排序却不能肯定;虽然如此编码的范围仍是大大缩小了。后来又发觉有些密码子具有重复性,即一种氨基酸能够有多种密码子,可是每一种密码子只编码一种氨基酸。

为了弄清密码子中核苷酸顺序,尼伦贝格巧妙地设计了第三阶段的实验。他采用的是核糖体结合法新技术,并加入的模板一概改成具有必然顺序的单个三联体。实验仍在无细胞体系中进行。他们的小组合成了全数64种单个的、顺序固定的三联体密码。实验结果能使50种密码子所对应的氨基酸能肯定下来。实验中发觉,有三个密码子并非编码任何氨基酸,后来明白它们是终止信号。还明白甲硫氨酸的密码子可兼作起始信号。完整的密码子表,到1963年由与尼伦贝格共获1968年诺贝尔生理学或医学奖的霍拉纳(Khorana,Har Gobind,1922—)利用其他技术加以肯定的。

⒍何谓密码的简并行和变偶性?二者有何关系?

答:同一种氨基酸有两个或多个密码子的现象,叫密码的简并性。tRNA上的反密码子与mRNA密码子配对时,密码子第一名、第二位碱基配对是严格的,第三位碱基能够有必然的变更,这种现象,叫变偶性。

变偶性可理解为是对密码的简并性的一种修正。

⒎为何只要32种tRNA就可以识别通用遗传密码中61个编码氨基酸的密码子?而在线粒体中只要22种tRNA就可以识别全数氨基酸的密码子?

答:由于密码子变偶性的存在,只要32种tRNA就可以识别通用遗传密码中61个编码氨基酸的密码子。

在线粒体中只要22种tRNA就可以识别全数氨基酸的密码子,这是由于密码的通用性和变异性造成的。

⒏何谓密码的通用性和变异性?试分析线粒体遗传密码的特点。

答:密码的通用性是指不同的生物密码子大体相同,即共用一套密码子。密码的变异性是指线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有必然变异。

哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:UGA不是终止信号,而是色氨酸的密码;多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体密码系统中有4个终止密码子(UAA,UAG,AGA,AGG);有4组密码子其氨基酸特异性只决定于三联体的前两位碱基,它们由一种tRNA即可识别;线粒体密码子特殊的变偶规则使它只要22种tRNA就可识别全数的氨基酸。

⒐为何遗传密码的编排具有防错的效果?

答:在遗传密码表中,氨基酸的极性通常由密码子的第二位碱基决定,简并性由第三位碱基决定。这种分相使得密码子中一个碱基被改换,其结果或是仍然编码欺上相同的氨基酸,或是以理化性质最接近的氨基酸取代。从而将基因突变的危害降至最低程度,即如此的编排有必然的防错效果。

⒑举例说明遗传密码的翻译受上下文的影响。

答:在有些情形下,密码子的含义可随上下文的不同而改变。如在大肠杆菌中,有时缬氨酸密码子GUG和亮氨酸密码子UUC也可被用作起始密码子,当其位于特殊mRNA翻译的起始位置时,可被起始tRNA所识别。

相关问题

  • 下列元素属于常量元素的是A. 钙B. 铁C. 铜D. 碘E. 锰

  • 研究者在某医院手机的147例大肠杆菌标本,分别在A、B两种培养基上培养,分析两种培养基培养的结果有无不同,该实验研究设计类型为( )A.配伍组设计B.区组设计C.单纯随机设计D.完全随机设计E.配对设计

  • 下列哪一项不是生物技术的应用?A. 基因编辑B. 克隆技术C. 核磁共振成像D. 转基因技术

  • (2分)下列有关DNA的叙述中,正确的是A. 人体细胞中的DNA含有人的全部遗传信息B. 同种个体之间的DNA是完全相同的C. DNA是一切生物的遗传物质D. 碱基配对规律和DNA双螺旋结构是DNA复制的分子基础E. 转录时只以DNA的一条链为模板

  • 乙酰CoA从线粒体进入细胞液的过程称为A. 柠檬酸丙酮酸循环B. γ谷氨酰循环C. ACPD. CoriS循环E. 嘌呤核苷酸循环

  • [多选题]神经元具有( )的功能。A. 接受刺激B. 传递信息C. 放大信息D. 缩小信息

  • 6.(2 分)下列关于维生素 D 的叙述中正确的是A. 代谢产物调节钙磷代谢B. 转化为胆汁酸排出体外C. 代谢产物可与核受体结合D. 作为辅酶参与糖有氧氧化E. 构成视觉细胞内的感光物质

  • 34.判断题生物安全问题已经成为全世界、全人类面临的重大生存和发展威胁之一,重大传染病和生物安全风险是事关国家安全和发展、事关社会大局稳定的重大风险挑战。()A. 对B. 错

  • [单选] 全酶是指()。A. 结构完整无缺的酶B. 酶蛋白与辅助因子的结合物C. 酶与抑制剂的复合物D. 酶与变构剂的复合物

  • 端粒酶具有的酶活性是()A. 依赖DNA的DNA聚合酶B. 依赖DNA的RNA聚合酶C. 依赖RNA的RNA聚合酶D. 依赖RNA的DNA聚合酶:(

  • 酶原激活的方式是A. 肽键断裂,水解去除氨基酸,酶的构象改变形成酶活性中心B. 氢键断裂,酶分子的空间构象发生改变C. 加入辅基形成结合酶D. 经过化学修饰由无活性的酶转变为高活性的酶

  • 三角肌分几束?()A. 2B. 1C. 3D. 4

  • 青春期生长突增是青少年快速增长到接近成人高度的一个阶段,它通常是青春期的标志。()A. 正确B. 错误

  • 精子与卵子结合成受精卵的部位是()A. 阴道B. 子宫颈C. 子宫腔D. 输卵管E. 腹腔

  • 下面哪个不属于下运动神经元()A. 前角细胞B. 前根型C. 前联合D. 骨骼肌肉接头E. 肌束颤动

  • 受精卵完成着床必须具备的条件A. 透明带消失B. 合体滋养层细胞形成C. 有足够的孕酮D. 雌激素分泌应充足E. 囊胚和子宫内膜同步发育

  • 顺式作用元件是指()。A. 基因的5'侧翼序列B. 基因的3'侧翼序列C. 基因的5'、3'侧翼序列D. 基因5'、3'侧翼序列以外的序列E. 具有转录调节功能的特异DNA序列

  • 受精卵完成着床必须具备的条件A. 透明带消失B. 合体滋养层细胞形成C. 有足够的孕酮D. 雌激素分泌应充足E. 囊胚和子宫内膜同步发育

  • (1分)脂肪酸合成所需的乙酰CoA由A. 胞浆直接提供B. 线粒体直接提供C. 线粒体合成,以乙酰CoA的形式转运到胞浆D. 线粒体合成苹果酸,以苹果酸形式转运到胞浆E. 线粒体合成柠檬酸,以柠檬酸形式转运到胞浆

  • B1细胞常识别TD-Ag,B2细胞则常识别TI-Ag。()A. 正确B. 错误

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号