logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
化工
题目

习题:2-1.为什么要研究流体的pVT关系?答:在化工过程的分析、研究与设计中,流体的压力p、体积V和温度T是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs自由能G等都不方便直接测量,它们需要利用流体的p –V –T数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T数据和热力学基本关系式进行计算。因此,流体的p –V –T关系的研究是一项重要的基础工作。个人收集整理 勿做商业用途2.2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。个人收集整理 勿做商业用途理想气体状态方程是最简单的状态方程:2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:个人收集整理 勿做商业用途 其中,对于不同的流体,具有不同的值。但Pitzer发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过=0.7,这一点。对于给定流体对比蒸气压曲线的位置,能够用在=0.7的流体与氩、氪、氙(简单球形分子)的值之差来表征。个人收集整理 勿做商业用途Pitzer把这一差值定义为偏心因子,即任何流体的值都不是直接测量的,均由该流体的临界温度、临界压力值及=0.7时的饱和蒸气压来确定。2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。由纯物质的p –V图上的饱和蒸气和饱和液体曲线可知。进行试差迭代得: h=0.244所以以进口N2为1mol作基准入口总物质的量为:1+3+0=4mol出口总物质的量为:1×(1-0.15)+3.(1-0.15)+1×0.15×2=3.7mol产品的摩尔流率为:反应物摩尔流率×3.7/4=1.022×105×3/4=9.45×104产品的体积流率为:速率2-27.测得天然气(摩尔组成为CH484%、N29.、C2H67%)在压力9.27MPa、温度37.8℃下的平均时速为25。试用下述方法计算在标准状况下的气体流速。个人收集整理 勿做商业用途(1)理想气体方程;(2)虚拟临界参数;(3)Dalton定律和普遍化压缩因子图;(4)Amagat定律和普遍化压缩因子图。解:(1)按理想气体状态方程;标准状况下气体流速v(273K,0.1013MPa)=(2)虚拟临界参数法首先使用Kay规则求出虚拟的临界温度和临界压力,计算结果列表如下:组分摩尔/%/K/MPay/Ky/MPa甲烷0.84190.564.599160.073.863氮气0.09126.103.3941..350.305乙烷0.07305.324.87221.370.341合计1.00192.794.510虚拟临界温度为192.79K,压力为4.510MPa,混合物的平均压缩因子可由下列对比温度和对比压力求出:个人收集整理 勿做商业用途,查两参数普遍化压缩因子图得:Zm=0.89将压缩因子代入方程得:在标准状态下,压缩因子Z=1,因此体积流率可以得到:(3) Dalton定律和普遍化压缩因子查普遍化压缩因子图时,各物质的压力使用分压组分ZyiZi甲烷1.637.7871.6930.900.756氮气2.460.8340.2460.980.0882乙烷1.0280.6490.1330.960.0672合计0.9114将压缩因子代入方程得:在标准状态下,压缩因子Z=1,因此体积流率可以得到:(4) Amagat定律和普遍化压缩因子先查得各物质的压缩因子,再使用分体积定律进行计算组分ZyiZi甲烷1.632.0160.880.739氮气2.462.7310.990.0891乙烷1.0281.9030.320.0224合计0.8507在标准状态下,压缩因子Z=1,因此体积流率可以得到:2-28.试分别用下述方法计算CO2(1)和丙烷(2)以3.5:6.5的摩尔比混合的混合物在400K和13.78MPa下的摩尔体积。个人收集整理 勿做商业用途(1)RK方程,采用Prausnitz建议的混合规则(令=0.1)(2)Pitzer的普遍化压缩因子关系数。解:(1)RK方程由附录三查得CO2(1)和丙烷(2)的临界参数值,并把这些值代入方程(2-48a)~(2-48e)以及(2-13a)、(2-13b)进行计算,得出的结果如下:个人收集整理 勿做商业用途ij/K/ MPa11304.27.3820.09400.2740.22822369.84.2480.20000.2770.15212335.45.4720.14040.27550.190并且组元CO2(1)6.4602.968×10-5C3H8(2)18.296.271×10-5121..12由(2-51a)和(2-51b)得: 按照式(2-16a) (A)和式(2-16b) (B)联立求解方程(A)、)(B)进行迭代计算得:迭代次数Zh10.211910.57090.371220.50960.415830.53940.392840. 52110.406650.53130.398860.52520.403570.52870.4008因此:Z=0.5287,h=0.4008混合物得摩尔体积为:(2)Pitzer的普遍化压缩因子关系式求出混合物的虚拟临界常数:查图2-9和2-10得:,则: 2-29.试计算甲烷(1)、丙烷(2)及正戊烷(3)的等摩尔三元体系在373K下的值。已知373K温度下个人收集整理 勿做商业用途,,,,解:由式(2-45),对于三元体系得:2-29.试计算混合物CO(1)-n-CH(2)在34..26.和6.48MPa时的液体体积。已知混合物中CO的摩尔分数为x=0.502,液体摩尔体积的实验值为个人收集整理 勿做商业用途解:从附录三中CO2(1)和n-C4H10(2)的临界参数值如下:使用式(2-63):计算式中:每个物质的Z值使用Zc代替,则:由式(2-65c)得:误差%=习题3-1. 单组元流体的热力学基本关系式有哪些?答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。 (2)Helmholtz方程,即能量的导数式 (3)麦克斯韦(Maxwell)关系式 3-2. 本章讨论了温度、压力对H、S的影响,为什么没有讨论对U的影响?答:本章详细讨论了温度、压力对H、S的影响,由于,在上一章已经讨论了流体的pVT关系,根据这两部分的内容,温度、压力对U的影响便可以方便地解决。个人收集整理 勿做商业用途3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:个人收集整理 勿做商业用途M与M分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V、U、H、S和G等。需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。个人收集整理 勿做商业用途定义剩余性质这一个概念是由于真实流体的焓变、熵变计算等需要用到真实流体的热容关系式,而对于真实流体,其热容是温度和压力的函数,并且没有相应的关联式,为了解决此问题就提出了剩余性质的概念,这样就可以利用这一概念方便地解决真实流体随温度、压力变化的焓变、熵变计算问题了。个人收集整理 勿做商业用途3-4. 热力学性质图和表主要有哪些类型?如何利用体系(过程)的特点,在各种图上确定热力学的状态点?答:已画出的热力学性质图有p-V,p-T,H-T、T-S、lnp-H、H-S图等,其中p-V图和p-T图在本书的第二章已经介绍,它们只作为热力学关系表达,而不是工程上直接读取数字的图。在工程上常用地热力学性质图有:个人收集整理 勿做商业用途(1) 焓温图(称H-T图),以H为纵坐标,T为横坐标。(2) 温熵图(称T-S图),以T为纵坐标,S为横坐标。(3) 压焓图(称lnp-H图),以lnp为纵坐标,H为横坐标。(4) 焓熵图(称Mollier图,H-S图),以H为纵坐标,S为横坐标。水蒸汽表是收集最广泛、最完善的一种热力学性质表。热力学性质图的制作可以将任意点取为零(即基准点),例如,目前常用的H、S基点为该物质-129℃的液体。可以利用一些实验数据,此外,还可以根据体系和过程的特点,利用各种热力学基本关系,如热力学性质关系式、p-V-T数据等进行计算。制作纯物质(包括空气)热力学性质图表是一个非常复杂的过程,制图中输入的实验值是有限的,大量的数据是选用合适的方法进行计算得到的。并且既需要各单相区和汽液共存区的p-V-T数据,又需要它们在不同条件下的等热力学基础数据,如沸点、熔点、临界常数、和。个人收集整理 勿做商业用途3-5. 推导以下方程, 式中T、V为独立变量证明:(1)设变量x,y,z,且写出z的全微分为:令,则,由全微分性质得:类比:写出A的全微分为:且,并,由全微分性质得:(2)将上式两边在恒定的温度T下同除以的dV得:(1) 已经证明则,3-6. 试证明

习题:2-
1.为什么要研究流体的pVT关系?答:在化工过程的分析、研究与设计中,流体的压力p、体积V和温度T是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs自由能G等都不方便直接测量,它们需要利用流体的p –V –T数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T数据和热力学基本关系式进行计算。因此,流体的p –V –T关系的研究是一项重要的基础工作。个人收集整理 勿做商业用途
2.2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。个人收集整理 勿做商业用途理想气体状态方程是最简单的状态方程:2-
3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:个人收集整理 勿做商业用途 其中,对于不同的流体,具有不同的值。但Pitzer发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过=
0.7,这一点。对于给定流体对比蒸气压曲线的位置,能够用在=0.7的流体与氩、氪、氙(简单球形分子)的值之差来表征。个人收集整理 勿做商业用途Pitzer把这一差值定义为偏心因子,即任何流体的值都不是直接测量的,均由该流体的临界温度、临界压力值及=
0.7时的饱和蒸气压来确定。2-
4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。由纯物质的p –V图上的饱和蒸气和饱和液体曲线可知。进行试差迭代得: h=
0.244所以以进口N2为1mol作基准入口总物质的量为:1+3+0=4mol出口总物质的量为:1×(1-

0.15)+
3.(1-0.15)+1×0.15×2=3.7mol产品的摩尔流率为:反应物摩尔流率×
3.7/4=
1.022×105×3/4=
9.45×104产品的体积流率为:速率2-2
7.测得天然气(摩尔组成为CH484%、N2
9.、C2H67%)在压力9.27MPa、温度37.8℃下的平均时速为25。试用下述方法计算在标准状况下的气体流速。个人收集整理 勿做商业用途(1)理想气体方程;(2)虚拟临界参数;(3)Dalton定律和普遍化压缩因子图;(4)Amagat定律和普遍化压缩因子图。解:(1)按理想气体状态方程;标准状况下气体流速v(273K,
0.1013MPa)=(2)虚拟临界参数法首先使用Kay规则求出虚拟的临界温度和临界压力,计算结果列表如下:组分摩尔/%/K/MPay/Ky/MPa甲烷
0.8419
0.56
4.59916
0.07
3.863氮气
0.0912
6.10
3.394
1..35
0.305乙烷
0.0730
5.32
4.8722
1.37
0.341合计
1.0019
2.79
4.510虚拟临界温度为19
2.79K,压力为
4.510MPa,混合物的平均压缩因子可由下列对比温度和对比压力求出:个人收集整理 勿做商业用途,查两参数普遍化压缩因子图得:Zm=
0.89将压缩因子代入方程得:在标准状态下,压缩因子Z=1,因此体积流率可以得到:(3) Dalton定律和普遍化压缩因子查普遍化压缩因子图时,各物质的压力使用分压组分ZyiZi甲烷
1.63
7.787
1.693
0.90
0.756氮气
2.46
0.834
0.246
0.98
0.0882乙烷
1.028
0.649
0.133
0.96
0.0672合计
0.9114将压缩因子代入方程得:在标准状态下,压缩因子Z=1,因此体积流率可以得到:(4) Amagat定律和普遍化压缩因子先查得各物质的压缩因子,再使用分体积定律进行计算组分ZyiZi甲烷
1.63
2.016
0.88
0.739氮气
2.46
2.731
0.99
0.0891乙烷
1.028
1.903
0.32
0.0224合计
0.8507在标准状态下,压缩因子Z=1,因此体积流率可以得到:2-2
8.试分别用下述方法计算CO2(1)和丙烷(2)以
3.5:
6.5的摩尔比混合的混合物在400K和13.78MPa下的摩尔体积。个人收集整理 勿做商业用途(1)RK方程,采用Prausnitz建议的混合规则(令=
0.1)(2)Pitzer的普遍化压缩因子关系数。解:(1)RK方程由附录三查得CO2(1)和丙烷(2)的临界参数值,并把这些值代入方程(2-48a)~(2-48e)以及(2-13a)、(2-13b)进行计算,得出的结果如下:个人收集整理 勿做商业用途ij/K/ MPa1130
4.2
7.382
0.0940
0.274
0.2282236
9.8
4.248
0.2000
0.277
0.1521233
5.4
5.472
0.1404
0.2755
0.190并且组元CO2(1)
6.460
2.968×10-5C3H8(2)1
8.29
6.271×10-512
1..12由(2-51a)和(2-51b)得: 按照式(2-16a) (A)和式(2-16b) (B)联立求解方程(A)、)(B)进行迭代计算得:迭代次数Zh1
0.21191
0.5709
0.37122
0.5096
0.41583
0.5394
0.39284
0. 5211
0.40665
0.5313
0.39886
0.5252
0.40357
0.5287
0.4008因此:Z=
0.5287,h=0.4008混合物得摩尔体积为:(2)Pitzer的普遍化压缩因子关系式求出混合物的虚拟临界常数:查图2-9和2-10得:,则: 2-2
9.试计算甲烷(1)、丙烷(2)及正戊烷(3)的等摩尔三元体系在373K下的值。已知373K温度下个人收集整理 勿做商业用途,,,,解:由式(2-45),对于三元体系得:2-2
9.试计算混合物CO(1)-n-CH(2)在3
4..2
6.和6.48MPa时的液体体积。已知混合物中CO的摩尔分数为x=
0.502,液体摩尔体积的实验值为个人收集整理 勿做商业用途解:从附录三中CO2(1)和n-C4H10(2)的临界参数值如下:使用式(2-63):计算式中:每个物质的Z值使用Zc代替,则:由式(2-65c)得:误差%=习题3-
1. 单组元流体的热力学基本关系式有哪些?答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。 (2)Helmholtz方程,即能量的导数式 (3)麦克斯韦(Maxwell)关系式 3-
2. 本章讨论了温度、压力对H、S的影响,为什么没有讨论对U的影响?答:本章详细讨论了温度、压力对H、S的影响,由于,在上一章已经讨论了流体的pVT关系,根据这两部分的内容,温度、压力对U的影响便可以方便地解决。个人收集整理 勿做商业用途3-
3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:个人收集整理 勿做商业用途M与M分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V、U、H、S和G等。需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。个人收集整理 勿做商业用途定义剩余性质这一个概念是由于真实流体的焓变、熵变计算等需要用到真实流体的热容关系式,而对于真实流体,其热容是温度和压力的函数,并且没有相应的关联式,为了解决此问题就提出了剩余性质的概念,这样就可以利用这一概念方便地解决真实流体随温度、压力变化的焓变、熵变计算问题了。个人收集整理 勿做商业用途3-
4. 热力学性质图和表主要有哪些类型?如何利用体系(过程)的特点,在各种图上确定热力学的状态点?答:已画出的热力学性质图有p-V,p-T,H-T、T-S、lnp-H、H-S图等,其中p-V图和p-T图在本书的第二章已经介绍,它们只作为热力学关系表达,而不是工程上直接读取数字的图。在工程上常用地热力学性质图有:个人收集整理 勿做商业用途(1) 焓温图(称H-T图),以H为纵坐标,T为横坐标。(2) 温熵图(称T-S图),以T为纵坐标,S为横坐标。(3) 压焓图(称lnp-H图),以lnp为纵坐标,H为横坐标。(4) 焓熵图(称Mollier图,H-S图),以H为纵坐标,S为横坐标。水蒸汽表是收集最广泛、最完善的一种热力学性质表。热力学性质图的制作可以将任意点取为零(即基准点),例如,目前常用的H、S基点为该物质-129℃的液体。可以利用一些实验数据,此外,还可以根据体系和过程的特点,利用各种热力学基本关系,如热力学性质关系式、p-V-T数据等进行计算。制作纯物质(包括空气)热力学性质图表是一个非常复杂的过程,制图中输入的实验值是有限的,大量的数据是选用合适的方法进行计算得到的。并且既需要各单相区和汽液共存区的p-V-T数据,又需要它们在不同条件下的等热力学基础数据,如沸点、熔点、临界常数、和。个人收集整理 勿做商业用途3-
5. 推导以下方程, 式中T、V为独立变量证明:(1)设变量x,y,z,且写出z的全微分为:令,则,由全微分性质得:类比:写出A的全微分为:且,并,由全微分性质得:(2)将上式两边在恒定的温度T下同除以的dV得:(1) 已经证明则,3-
6. 试证明

题目解答

答案

个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途 个人收集整理 勿做商业用途

相关问题

  • 实验室中气瓶混放存在哪些安全风险?A. 无风险B. 气瓶倾倒风险、)C. 气瓶爆炸风险D. 无上述风险

  • 逆流吸收操作,今吸收剂温度升高,其他入塔条件都不变,则出口气体浓度y出,液相出口浓度-|||-x出 () 。-|||-A.y出增大,x出增大; B.y出增大,x出减小;-|||-C.y出减小,x出减小; D.y出减小,x出增大。

  • 炸炉油位必须在在上下油位线之间A. 正确B. 错误

  • 某公司在易爆炸区域的车间液氨气化罐(V104)电加热器以及车间二楼2#导热油炉为非防爆电气,不符合国家标准或者行业标准。根据《化工和危险化学品生产经营单位重大生产安全事故隐患判定标准(试行)》,应判定为重大事故隐患。()A. 正确B. 错误

  • 12、为防止发生意外,气体钢瓶重新充气前瓶内残余气体应尽可能用尽。()A. 正确B. 错误

  • 在逆流吸收操作中,保持气、液相进塔组成不变,若仅降低操作温度,则收率()、传质单元高度()。下面答案正确的是_。A. 增加、减少B. 增加、不变C. 减少、不变D. 减少、增加

  • 合成氨工业是一个能耗较高的行业。A. 正确B. 错误

  • 以下表述错误的是____。A. 等分子反向扩散的前提是界面能等速率地向气相提供组分。B. 主体流动产生的原因是组分A被液体吸收及组分B的反向扩散使气相主体与界面之间产生微小压差,并促使混合C. 主体流动是宏观运动,它同时携带组分A与组分B流向界面。D. 在定态条件下,主体流动所带组分B的量,必恰好等于组分A的反向扩散。

  • 在用油泵减压过滤中,需要保留滤液时,按装安全瓶的目的是 ( )A. 加大压力B. 降低压力C. 保证压力平稳D. 防止倒吸

  • 6、气体钢瓶按气体的化学性质可分为可燃气体、助燃气体、不燃气体、惰性气体。()A. 正确B. 错误

  • 在逆流操作的填料解吸塔中,若降低解吸气进塔的溶质浓度,其它操作条件不变,则液相出塔浓度、气相出塔浓度将分别________。A. 上升、上升B. 下降、下降C. 不变、不变D. 上升、下降ADBCCADB

  • 易制毒化学品的生产、经营、购买、运输无须经过许可即可开展。这种说法()A. 错误B. 正确

  • 6. 危险化学品的领用、发放及保管等必须严格按照 ( )规定执行,不得私自存放或带出实验室。 A. 五双B. 四双C. 三双

  • 减压过滤操作,下列说法错误的是()(4.0)(4.0) A. 布氏漏斗下方的斜口要对着抽滤瓶的支管B. 滤纸大小应略小于漏斗内径又能将全部磁孔盖严C. 无需用玻璃棒引流D. 抽滤完毕,应先关闭水泵再拆下连接水泵和吸滤瓶的橡皮管

  • 1. 单元操作的理论基础是( ) A. 动量传递B. 质量传递C. 热量传递D. 机械能传递

  • 对一定操作条件下的填料吸收塔,如将填料层增高些,则塔的传质单元高度将____。A. 降低B. 升高C. 不变D. 不确定

  • 2019年7月1日凌晨,冰箱故障导致冰箱内药品燃烧爆炸,造成电器起火事故□违规使用大功率电器,未制定好预案造成电器起火爆炸□实验开始前为制定好预案,实验室中未安装气体报警器,酿成氢气爆炸大祸□违规使用存储高危化学品,造成高危化学品自燃起火爆炸□违规存储化学品,造成金属遇潮湿空气集热自燃爆炸□违反人走关水关电关气,造成设备持续工作聚热引发火灾

  • 1. 试分析精馏过程中回流比大小对操作费与设备费的影响并说明适宜回流比如何确定。

  • 在填料吸收塔的计算中,关于传质单元数和传质单元高度,以下描述错误的是________。A. 传质单元数是表示传质分离任务难易程度的一个量。B. 传质单元高度是表示设备传质效能高低的一个量。C. 传质单元数与物系的相平衡、进出口浓度、以及设备的操作条件(如流速)有关。D. 传质单元高度与设备的型式、设备的操作条件有关,表示了完成一个传质单元所需的塔高。

  • 成份分离和成份减法类似,都是减去目标产品的特定成份。A. 对B. 错

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号