logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
计算机
题目

4 4 E-8 B B 14-15.什么是最大传送单元MTU?它和IP数据报的首部中的哪个字段有关系?4-16.在因特网中将IP数据报分片传送的数据报在最后的目的主机进行组装。还可以有另一种做法,即数据报片通过一个网络就进行一次组装。是比较这两种方法的优劣。在目的站而不是在中间的路由器进行组装是由于:(1)路由器处理数据报更简单些;效率高,延迟小。(2)数据报的各分片可能经过各自的路径。因此在每一个中间的路由器进行组装可能总会缺少几个数据报片;(3)也许分组后面还要经过一个网络,它还要给这些数据报片划分成更小的片。如果在中间的路由器进行组装就可能会组装多次。(为适应路径上不同链路段所能许可的不同分片规模,可能要重新分片或组装)4-17. 一个3200位长的TCP报文传到IP层,加上160位的首部后成为数据报。下面的互联网由两个局域网通过路由器连接起来。但第二个局域网所能传送的最长数据帧中的数据部分只有1200位。因此数据报在路由器必须进行分片。试问第二个局域网向其上层要传送多少比特的数据(这里的“数据”当然指的是局域网看见的数据)?答:第二个局域网所能传送的最长数据帧中的数据部分只有1200bit,即每个IP数据片的数据部分<1200-160(bit),由于片偏移是以8字节即64bit为单位的,所以IP数据片的数据部分最大不超过1024bit,这样3200bit的报文要分4个数据片,所以第二个局域网向上传送的比特数等于(3200+4×160),共3840bit。4-18.(1)有人认为:“ARP协议向网络层提供了转换地址的服务,因此ARP应当属于数据链路层。”这种说法为什么是错误的?因为ARP本身是网络层的一部分,ARP协议为IP协议提供了转换地址的服务,数据链路层使用硬件地址而不使用IP地址,无需ARP协议数据链路层本身即可正常运行。因此ARP不再数据链路层。(2)试解释为什么ARP高速缓存每存入一个项目就要设置10~20分钟的超时计时器。这个时间设置的太大或太小会出现什么问题?答:考虑到IP地址和Mac地址均有可能是变化的(更换网卡,或动态主机配置)10-20分钟更换一块网卡是合理的。超时时间太短会使ARP请求和响应分组的通信量太频繁,而超时时间太长会使更换网卡后的主机迟迟无法和网络上的其他主机通信。(3)至少举出两种不需要发送ARP请求分组的情况(即不需要请求将某个目的IP地址解析为相应的硬件地址)。在源主机的ARP高速缓存中已经有了该目的IP地址的项目;源主机发送的是广播分组;源主机和目的主机使用点对点链路。4-19.主机A发送IP数据报给主机B,途中经过了5个路由器。试问在IP数据报的发送过程中总共使用了几次ARP?6次,主机用一次,每个路由器各使用一次。4-20.设某路由器建立了如下路由表:目的网络 子网掩码 下一跳128.9.br>6.39.0 25..255.255.128 接口m0128.9.br>6.39.128 25..255.255.128 接口m1128.96.40.0 25..255.255.128 R2192.4.15.br>3.0 255.255.255.192 R3*(默认) —— R4现共收到5个分组,其目的地址分别为:(1)128.9.br>6.39.10(2)128.96.40.12(3)128.96.40.151(4)192.153.17(5)192.4.153.90(1)分组的目的站IP地址为:128.9.br>6.39.10。先与子网掩码25..255.255.128相与,得128.96.39.0,可见该分组经接口0转发。(2)分组的目的IP地址为:128.96.40.12。①与子网掩码25..255.255.128.与得128.9.br>6.40.0,不等于128.96.39.0。②与子网掩码25..255.255.128.与得128.96.40.0,经查路由表可知,该项分组经R2转发。(3)分组的目的IP地址为:128.96.40.151,与子网掩码255.255.255.128相与后得128.96.40.128,与子网掩码255.255.255.192相与后得128.96.40.128,经查路由表知,该分组转发选择默认路由,经R4转发。(4.分组的目的IP地址为:192.4.15.br>3.17。与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.0,经查路由表知,该分组经R3转发。(5.分组的目的IP地址为:192.4.153.90,与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.64,经查路由表知,该分组转发选择默认路由,经R4转发。4-21某单位分配到一个B类IP地址,其net-id为129.25.br>0.0.0.该单位有4000台机器,分布在16个不同的地点。如选用子网掩码为255.255.255.0,试给每一个地点分配一个子网掩码号,并算出每个地点主机号码的最小值和最大值4000/16=25.,平均每个地点250台机器。如选255.255.255.0为掩码,则每个网络所连主机数=28-2=254>250,共有子网数=28-2=254>16,能满足实际需求。可给每个地点分配如下子网号码地点: 子网号(subnet-id) 子网网络号 主机IP的最小值和最大值1. 0.000001 129.250.1.0 129.250.1.1---129.250.1.2542. 0.000010 129.250.2.0 129.250.2.1---129.250.2.2543. 0.000011 129.250.3.0 129.250.3.1---129.250.3.2544. 0.000100 129.250.4.0 129.250.4.1---129.250.4.2545. 0.000101 129.250.5.0 129.250.5.1---129.250.5.2546. 0.000110 129.250.6.0 129.250.6.1---129.250.6.2547. 0.000111 129.250.7.0 129.250.7.1---129.250.7.2548. 0.001000 129.250.8.0 129.250.8.1---129.250.8.2549. 0.001001 129.250.9.0 129.250.9.1---129.250.9.25410. 00001010 129.250.10.0 129.250.10.1---129.250.10.2541.: 0.001011 129.250.11.0 129.250.11.1---129.250.11.25412. 0.001100 129.250.12.0 129.250.12.1---129.250.12.25413. 0.001101 129.250.13.0 129.250.13.1---129.250.13.25414. 0.001110 129.250.14.0 129.250.14.1---129.250.14.25415. 0.001111 129.250.15.0 129.250.15.1---129.250.15.25416. 0.010000 129.250.16.0 129.250.16.1---129.250.16.2544-2...一个数据报长度为4000字节(固定首部长度)。现在经过一个网络传送,但此网络能够传送的最大数据长度为1500字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和MF标志应为何数值?IP数据报固定首部长度为20字节总长度(字节)数据长度(字节)MF片偏移原始数据报40003980数据报片1150014801数据报片2150014801185数据报片3104010203704.24.试找出可产生以下数目的A类子网的子网掩码(采用连续掩码)。(1)2,(2)6,(3)30.(4)62,(5)122,(6)250.(1)2.br>5..192.0.0,(2)255.224.0.0,(3)255.248.0.0,(4)255.252.0.0,(5)255.254.0.0,(6)255.255.0.04-25.以下有4个子网掩码。哪些是不推荐使用的?为什么?(1)17.br>6.0.0.0,(2.96.0.0.0,(3)127.192.0.0,(4)25..128.0.0。只有(4)是连续的1和连续的0的掩码,是推荐使用的4-26.有如下的4个/24地址块,试进行最大可能性的聚会。2.2.56.132.0/242.2.56.13..0/242.2.56.134.0/242.2.5.br>6.135.0/24212=(11010100)2,56=(00111000)2132=(10000100)2,133=(10000101)2134=(10000110)2,135=(10000111)2所以共同的前缀有2.位,即11010100 00111000 100001,聚合的CIDR地址块是:212.56.132.0/224-27.有两个CIDR地址块20.br>8.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由。208.128/11的前缀为:11010000 10020.br>8.130.28/22的前缀为:11010000 10000010 000101,它的前11位与208.128/11的前缀是一致的,所以208.128/11地址块包含了208.130.28/22这一地址块。4-29.一个自治系统有5.局域网,其连接图如图4-55示。LAN2至LAN5上的主机数分别为:91,150.3和15.该自治系统分配到的IP地址块为30.138.118/23。试给出每一个局域网的地址块(包括前缀)。4-30.138.118/23--30.138.0111 011答:边缘部分:由各主机构成,用户直接进行信息处理和信息共享;低速连入核心网。核心部分:由各路由器连网,负责为边缘部分提供高速远程分组交换。1-13 客户服务器方式与对等通信方式的主要区别是什么?有没有相同的地方?答:前者严格区分服务和被服务者,后者无此区别。后者实际上是前者的双向应用。1-14 计算机网络有哪些常用的性能指标?答:速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率1-15 假定网络利用率达到了90%。试估计一下现在的网络时延是它的最小值的多少倍?

4 4 E-8 B B 14-1
5.什么是最大传送单元MTU?它和IP数据报的首部中的哪个字段有关系?4-1
6.在因特网中将IP数据报分片传送的数据报在最后的目的主机进行组装。还可以有另一种做法,即数据报片通过一个网络就进行一次组装。是比较这两种方法的优劣。在目的站而不是在中间的路由器进行组装是由于:(1)路由器处理数据报更简单些;效率高,延迟小。(2)数据报的各分片可能经过各自的路径。因此在每一个中间的路由器进行组装可能总会缺少几个数据报片;(3)也许分组后面还要经过一个网络,它还要给这些数据报片划分成更小的片。如果在中间的路由器进行组装就可能会组装多次。(为适应路径上不同链路段所能许可的不同分片规模,可能要重新分片或组装)4-1
7. 一个3200位长的TCP报文传到IP层,加上160位的首部后成为数据报。下面的互联网由两个局域网通过路由器连接起来。但第二个局域网所能传送的最长数据帧中的数据部分只有1200位。因此数据报在路由器必须进行分片。试问第二个局域网向其上层要传送多少比特的数据(这里的“数据”当然指的是局域网看见的数据)?答:第二个局域网所能传送的最长数据帧中的数据部分只有1200bit,即每个IP数据片的数据部分<1200-160(bit),由于片偏移是以8字节即64bit为单位的,所以IP数据片的数据部分最大不超过1024bit,这样3200bit的报文要分4个数据片,所以第二个局域网向上传送的比特数等于(3200+4×160),共3840bit。4-1
8.(1)有人认为:“ARP协议向网络层提供了转换地址的服务,因此ARP应当属于数据链路层。”这种说法为什么是错误的?因为ARP本身是网络层的一部分,ARP协议为IP协议提供了转换地址的服务,数据链路层使用硬件地址而不使用IP地址,无需ARP协议数据链路层本身即可正常运行。因此ARP不再数据链路层。(2)试解释为什么ARP高速缓存每存入一个项目就要设置10~20分钟的超时计时器。这个时间设置的太大或太小会出现什么问题?答:考虑到IP地址和Mac地址均有可能是变化的(更换网卡,或动态主机配置)10-20分钟更换一块网卡是合理的。超时时间太短会使ARP请求和响应分组的通信量太频繁,而超时时间太长会使更换网卡后的主机迟迟无法和网络上的其他主机通信。(3)至少举出两种不需要发送ARP请求分组的情况(即不需要请求将某个目的IP地址解析为相应的硬件地址)。在源主机的ARP高速缓存中已经有了该目的IP地址的项目;源主机发送的是广播分组;源主机和目的主机使用点对点链路。4-1
9.主机A发送IP数据报给主机B,途中经过了5个路由器。试问在IP数据报的发送过程中总共使用了几次ARP?6次,主机用一次,每个路由器各使用一次。4-2
0.设某路由器建立了如下路由表:目的网络 子网掩码 下一跳12
8.
9.br>6.39.0 2

5..255.255.128 接口m012
8.
9.br>6.39.128 2

5..255.255.128 接口m112
8.9
6.4
0.0 2

5..255.255.128 R219
2.
4.1

5.br>3.0 255.255.255.192 R3*(默认) —— R4现共收到5个分组,其目的地址分别为:(1)12
8.
9.br>6.39.10(2)12
8.9
6.4
0.12(3)12
8.9
6.4
0.151(4)19
2.15
3.17(5)19
2.
4.15
3.90(1)分组的目的站IP地址为:12
8.
9.br>
6.39.10。先与子网掩码2

5..255.255.128相与,得128.96.39.0,可见该分组经接口0转发。(2)分组的目的IP地址为:12
8.9
6.4
0.12。①与子网掩码2

5..255.255.12
8.与得128.
9.br>
6.4
0.0,不等于128.96.39.0。②与子网掩码2




5..255.255.12

8.与得128.9

6.4

0.0,经查路由表可知,该项分组经R2转发。(3)分组的目的IP地址为:128.96.40.151,与子网掩码255.255.255.128相与后得128.96.40.128,与子网掩码255.255.255.192相与后得128.96.40.128,经查路由表知,该分组转发选择默认路由,经R4转发。(

4.分组的目的IP地址为:19

2.4.1


5.br>
3.17。与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.0,经查路由表知,该分组经R3转发。(


5.分组的目的IP地址为:19

2.

4.15

3.90,与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.64,经查路由表知,该分组转发选择默认路由,经R4转发。4-21某单位分配到一个B类IP地址,其net-id为12
9.2

5.br>
0.0.0.该单位有4000台机器,分布在16个不同的地点。如选用子网掩码为255.255.255.0,试给每一个地点分配一个子网掩码号,并算出每个地点主机号码的最小值和最大值4000/16=2

5.,平均每个地点250台机器。如选255.255.255.0为掩码,则每个网络所连主机数=28-2=254>250,共有子网数=28-2=254>16,能满足实际需求。可给每个地点分配如下子网号码地点: 子网号(subnet-id) 子网网络号 主机IP的最小值和最大值

1.

0.000001 12

9.250.1.0 129.250.1.1---129.250.1.254

2.

0.000010 12

9.250.2.0 129.250.2.1---129.250.2.254

3.

0.000011 12

9.250.3.0 129.250.3.1---129.250.3.254

4.

0.000100 12

9.250.4.0 129.250.4.1---129.250.4.254

5.

0.000101 12

9.250.5.0 129.250.5.1---129.250.5.254

6.

0.000110 12

9.250.6.0 129.250.6.1---129.250.6.254

7.

0.000111 12

9.250.7.0 129.250.7.1---129.250.7.254

8.

0.001000 12

9.250.8.0 129.250.8.1---129.250.8.254


9.

0.001001 129.250.9.0 129.250.9.1---129.250.9.2541


0. 00001010 12

9.250.10.0 129.250.10.1---129.250.10.254

1.:

0.001011 12

9.250.11.0 129.250.11.1---129.250.11.2541

2.

0.001100 12

9.250.12.0 129.250.12.1---129.250.12.2541

3.

0.001101 12

9.250.13.0 129.250.13.1---129.250.13.2541

4.

0.001110 12

9.250.14.0 129.250.14.1---129.250.14.2541

5.

0.001111 12

9.250.15.0 129.250.15.1---129.250.15.2541

6.

0.010000 12

9.250.16.0 129.250.16.1---129.250.16.2544-
2...一个数据报长度为4000字节(固定首部长度)。现在经过一个网络传送,但此网络能够传送的最大数据长度为1500字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和MF标志应为何数值?IP数据报固定首部长度为20字节总长度(字节)数据长度(字节)MF片偏移原始数据报40003980数据报片1150014801数据报片2150014801185数据报片310401020370
4.24.试找出可产生以下数目的A类子网的子网掩码(采用连续掩码)。(1)2,(2)6,(3)3
0.(4)62,(5)122,(6)250.(1)
2.br>


5..192.


0.0,(2)255.22
4.0.0,(3)255.24
8.0.0,(4)255.252.0.0,(5)255.254.0.0,(6)255.255.0.04-2
5.以下有4个子网掩码。哪些是不推荐使用的?为什么?(1)1
7.br>
6.


0.0.0,(
2.96.0.0.0,(3)127.192.0.0,(4)2
5..12
8.0.0。只有(4)是连续的1和连续的0的掩码,是推荐使用的4-2
6.有如下的4个/24地址块,试进行最大可能性的聚会。
2.2.5
6.132.0/24
2.2.5
6.1
3..0/24
2.2.5
6.13
4.0/24
2.2.
5.br>6.135.0/24212=(11010100)2,56=(00111000)2132=(10000100)2,133=(10000101)2134=(10000110)2,135=(10000111)2所以共同的前缀有
2.位,即11010100 00111000 100001,聚合的CIDR地址块是:212.5
6.132.0/224-2
7.有两个CIDR地址块2
0.br>
8.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由。20
8.128/11的前缀为:11010000 1002
0.br>

8.130.28/22的前缀为:11010000 10000010 000101,它的前11位与208.128/11的前缀是一致的,所以208.128/11地址块包含了208.130.28/22这一地址块。4-2
9.一个自治系统有
5.局域网,其连接图如图4-55示。LAN2至LAN5上的主机数分别为:91,15
0.3和15.该自治系统分配到的IP地址块为30.13
8.118/23。试给出每一个局域网的地址块(包括前缀)。4-3
0.13
8.118/23--30.138.0111 011答:边缘部分:由各主机构成,用户直接进行信息处理和信息共享;低速连入核心网。核心部分:由各路由器连网,负责为边缘部分提供高速远程分组交换。1-13 客户服务器方式与对等通信方式的主要区别是什么?有没有相同的地方?答:前者严格区分服务和被服务者,后者无此区别。后者实际上是前者的双向应用。1-14 计算机网络有哪些常用的性能指标?答:速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率1-15 假定网络利用率达到了90%。试估计一下现在的网络时延是它的最小值的多少倍?

题目解答

答案

解:设网络利用率为U。,网络时延为D,网络时延最小值为D

U=90%;D=D/(1-U)---->D/ D=10

现在的网络时延是最小值的10倍

1-16 计算机通信网有哪些非性能特征?非性能特征与性能特征有什么区别?

答:征:宏观整体评价网络的外在表现。性能指标:具体定量描述网络的技术性能。

1-17 收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延:(1)数据长度为107bit,数据发送速率为100kb/s。

(2)数据长度为103bit,数据发送速率为1Gb/s。从上面的计算中可以得到什么样的结论?

解:(1)发送时延:ts=107/105=100s 传播时延tp=106/(2×108)=0.005s

(2)发送时延ts =103/109=1µs 传播时延:tp=106/(2×108)=0.005s

结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。

1-18 假设信号在媒体上的传播速度为2×108m/s.媒体长度L分别为:(1)10cm(网络接口卡)(2)100m(局域网)(3)100km(城域网)(4)5000km(广域网)

试计算出当数据率为1Mb/s和10Gb/s时在以上媒体中正在传播的比特数。

分配网络前缀时应先分配地址数较多的前缀

题目没有说LAN1上有几个主机,但至少需要3个地址给三个路由器用。

本题的解答有很多种,下面给出两种不同的答案:

第一组答案 第二组答案

LAN1 30.138.119.192/29 30.138.118.192/27

LAN2 30.138.119.0/25 30.138.118.0/25

LAN3 30.138.118.0/24 30.138.119.0/24

LAN4 30.138.119.200/29 30.138.118.224/27

LAN5 30.138.119.128/26 30.138.118.128/27

4-31.以下地址中的哪一个和86.32/12匹配:请说明理由。

(1)86.33.224.123:(2)86.79.65.216;(3)86.58.119.74; (4)86.68.206.154。

86.32/12 86.00100000 下划线上为12位前缀说明第二字节的前4位在前缀中。

给出的四个地址的第二字节的前4位分别为:0010 ,0100 ,0011和0100。因此只有(1)是匹配的。

4-32.以下地址中的哪一个地址2.52.90。140匹配?请说明理由。

(1)0/4;(2)32/4;(3)4/6(4)152.0/11

前缀(1)和地址2.52.90.140匹配

2.52.90.140 0000 0010.52.90.140

0/4 0000 0000

32/4 0010 0000

4/6 0000 0100

80/4 0101 0000

4-35. 已知地址块中的一个地址是140.120.84.24/20。试求这个地址块中的最小地址和最大地址。地址掩码是什么?地址块中共有多少个地址?相当于多少个C类地址?

140.120.84.24 140.120.(0101 0100).24

最小地址是 140.120.(0101 0000).0/20 (80)

最大地址是 140.120.(0101 1111).255/20 (95)

地址数是4096.相当于16个C类地址。

4-36.已知地址块中的一个地址是190.87.140.202/29。重新计算上题。

190.87.140.202/29 190.87.140.(1100 1010)/29

最小地址是 190.87.140.(1100 1000)/29 200

最大地址是 190.87.140.(1100 1111)/29 207

地址数是8.相当于1/32个C类地址。

4-37.某单位分配到一个地址块136.23.12.64/26。现在需要进一步划分为4个一样大的子网。试问:(1)每一个子网的网络前缀有多长?(2)每一个子网中有多少个地址?(3)每一个子网的地址是什么?(4)每一个子网可分配给主机使用的最小地址和最大地址是什么?

(1)每个子网前缀28位。

(2)每个子网的地址中有4位留给主机用,因此共有16个地址。

(3)四个子网的地址块是:

第一个地址块136.23.12.64/28,可分配给主机使用的

最小地址:136.23.12.01000001=136.23.12.65/28

最大地址:136.23.12.01001110=136.23.12.78/28

第二个地址块136.23.12.80/28,可分配给主机使用的

最小地址:136.23.12.01010001=136.23.12.81/28

最大地址:136.23.12.01011110=136.23.12.94/28

第三个地址块136.23.12.96/28,可分配给主机使用的

最小地址:136.23.12.01100001=136.23.12.97/28

最大地址:136.23.12.01101110=136.23.12.110/28

第四个地址块136.23.12.112/28,可分配给主机使用的

最小地址:136.23.12.01110001=136.23.12.113/28

最大地址:136.23.12.01111110=136.23.12.126/28

4-38. IGP和EGP这两类协议的主要区别是什么?

IGP:在自治系统内部使用的路由协议;力求最佳路由EGP:在不同自治系统便捷使用的路由协议;力求较好路由(不兜圈子)

EGP必须考虑其他方面的政策,需要多条路由。代价费用方面可能可达性更重要。

IGP:内部网关协议,只关心本自治系统内如何传送数据报,与互联网中其他自治系统使用什么协议无关。

EGP:外部网关协议,在不同的AS边界传递路由信息的协议,不关心AS内部使用何种协议。

注:IGP主要考虑AS内部如何高效地工作,绝大多数情况找到最佳路由,对费用和代价的有多种解释。

4-39. 试简述RIP,OSPF和BGP路由选择协议的主要特点。

主要特点

RIP

OSPF

BGP

网关协议

内部

内部

外部

路由表内容

目的网,下一站,距离

目的网,下一站,距离

目的网,完整路径

最优通路依据

跳数

费用

多种策略

算法

距离矢量

链路状态

距离矢量

传送方式

运输层UDP

IP数据报

建立TCP连接

其他

简单、效率低、跳数为16不可达、好消息传的快,坏消息传的慢

效率高、路由器频繁交换信息,难维持一致性

规模大、统一度量为可达性

4-40.RIP使用UDP,OSPF使用IP,而BGP使用TCP。这样做有何优点?为什么RIP周期性地和临站交换路由器由信息而BGP却不这样做?

RIP只和邻站交换信息,使用UDP无可靠保障,但开销小,可以满足RIP要求;

OSPF使用可靠的洪泛法,直接使用IP,灵活、开销小;

BGP需要交换整个路由表和更新信息,TCP提供可靠交付以减少带宽消耗;

RIP使用不保证可靠交付的UDP,因此必须不断地(周期性地)和邻站交换信息才能使路由信息及时得到更新。但BGP使用保证可靠交付的TCP因此不需要这样做。

4-41.更新后的B路由表:

N1 7 A 无新信息,不改变

N2 5 C 相同的下一跳,更新

N3 9 C 新的项目,添加进来

N6 5 C 不同的下一跳,距离更短,更新

N8 4 E 不同的下一跳,距离一样,不改变

N9 4 F 不同的下一跳,距离更大,不改变

4-42. 更新后的A路由表:

N1 3 C 不同的下一跳,距离更短,改变

N2 2 C 不同的下一跳,距离一样,不变

N3 1 F 不同的下一跳,距离更大,不改变

N4 5 G 无新信息,不改变

4-43.IGMP协议的要点是什么?隧道技术是怎样使用的?

IGMP可分为两个阶段:

第一阶段:当某个主机加入新的多播组时,该主机应向多播组的多播地址发送IGMP 报文,声明自己要成为该组的成员。本地的多播路由器收到 IGMP 报文后,将组成员关系转发给因特网上的其他多播路由器。

第二阶段:因为组成员关系是动态的,因此本地多播路由器要周期性地探询本地局域网上的主机,以便知道这些主机是否还继续是组的成员。只要对某个组有一个主机响应,那么多播路由器就认为这个组是活跃的。但一个组在经过几次的探询后仍然没有一个主机响应,则不再将该组的成员关系转发给其他的多播路由器。

隧道技术:多播数据报被封装到一个单播IP数据报中,可穿越不支持多播的网络,到达另一个支持多播的网络。

5—01试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什么重要区别?为什么运输层是必不可少的?

答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应用层提供服务

运输层为应用进程之间提供端到端的逻辑通信,但网络层是为主机之间提供逻辑通信(面向主机,承担路由功能,即主机寻址及有效的分组交换)。

各种应用进程之间通信需要“可靠或尽力而为”的两类服务质量,必须由运输层以复用和分用的形式加载到网络层。

5—02网络层提供数据报或虚电路服务对上面的运输层有何影响?

答:网络层提供数据报或虚电路服务不影响上面的运输层的运行机制。但提供不同的服务质量。

5—03当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是面向无连接的?

答:都是。这要在不同层次来看,在运输层是面向连接的,在网络层则是无连接的。

5—05试举例说明有些应用程序愿意采用不可靠的UDP,而不用采用可靠的TCP。

答:VOIP:由于语音信息具有一定的冗余度,人耳对VOIP数据报损失由一定的承受度,但对传输时延的变化较敏感。

有差错的UDP数据报在接收端被直接抛弃,TCP数据报出错则会引起重传,可能带来较大的时延扰动。

因此VOIP宁可采用不可靠的UDP,而不愿意采用可靠的TCP。

5—06接收方收到有差错的UDP用户数据报时应如何处理?

答:丢弃

5—07如果应用程序愿意使用UDP来完成可靠的传输,这可能吗?请说明理由

答:可能,但应用程序中必须额外提供与TCP相同的功能。

5—08为什么说UDP是面向报文的,而TCP是面向字节流的?

答:发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。

接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。

发送方TCP对应用程序交下来的报文数据块,视为无结构的字节流(无边界约束,课分拆/合并),但维持各字节

5—09端口的作用是什么?为什么端口要划分为三种?

答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。

熟知端口,数值一般为0~1023.标记常规的服务进程;

登记端口号,数值为1024~49151,标记没有熟知端口号的非常规的服务进程;

5—10试说明运输层中伪首部的作用。

答:用于计算运输层数据报校验和。

5—11某个应用进程使用运输层的用户数据报UDP,然而继续向下交给IP层后,又封装成IP数据报。既然都是数据报,可否跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没提提供?

答:不可跳过UDP而直接交给IP层

IP数据报IP报承担主机寻址,提供报头检错;只能找到目的主机而无法找到目的进程。

UDP提供对应用进程的复用和分用功能,以及提供对数据差分的差错检验。

5—12一个应用程序用UDP,到IP层把数据报在划分为4个数据报片发送出去,结果前两个数据报片丢失,后两个到达目的站。过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。结果这次前两个到达目的站而后两个丢失。试问:在目的站能否将这两次传输的4个数据报片组装成完整的数据报?假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。

答:不行

重传时,IP数据报的标识字段会有另一个标识符。

仅当标识符相同的IP数据报片才能组装成一个IP数据报。

前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。

5—13一个UDP用户数据的数据字段为8192季节。在数据链路层要使用以太网来传送。试问应当划分为几个IP数据报片?说明每一个IP数据报字段长度和片偏移字段的值。

答:6个

数据字段的长度:前5个是1480字节,最后一个是800字节。

片偏移字段的值分别是:0,1480,2960,4440,5920和7400.

5—14一UDP用户数据报的首部十六进制表示是:06 32 00 45 00 1C E2 17.试求源端口、目的端口、用户数据报的总长度、数据部分长度。这个用户数据报是从客户发送给服务器发送给客户?使用UDP的这个服务器程序是什么?

解:源端口1586,目的端口69,UDP用户数据报总长度28字节,数据部分长度20字节。

此UDP用户数据报是从客户发给服务器(因为目的端口号<1023,是熟知端口)、服务器程序是TFFTP。

5—15使用TCP对实时话音数据的传输有没有什么问题?使用UDP在传送数据文件时会有什么问题?

答:如果语音数据不是实时播放(边接受边播放)就可以使用TCP,因为TCP传输可靠。接收端用TCP讲话音数据接受完毕后,可以在以后的任何时间进行播放。但假定是实时传输,则必须使用UDP。

UDP不保证可靠交付,但UCP比TCP的开销要小很多。因此只要应用程序接受这样的服务质量就可以使用UDP。

5—16在停止等待协议中如果不使用编号是否可行?为什么?

答:分组和确认分组都必须进行编号,才能明确哪个分则得到了确认。

5—22主机A向主机B发送一个很长的文件,其长度为L字节。假定TCP使用的MSS有1460字节。(1)在TCP的序号不重复使用的条件下,L的最大值是多少?(2)假定使用上面计算出文件长度,而运输层、网络层和数据链路层所使用的首部开销共66字节,链路的数据率为10Mb/s,试求这个文件所需的最短发送时间。

解:(1)L_max的最大值是2^32=4GB,G=2^30.

(2) 满载分片数Q={L_max/MSS}取整=2941758发送的总报文数

N=Q*(MSS+66)+{(L_max-Q*MSS)+66}=4489122708+682=4489123390

总字节数是N=4489123390字节,发送4489123390字节需时间为:N*8/(10*10^6)=3591.3秒,即59.85分,约1小时。

5—23主机A向主机B连续发送了两个TCP报文段,其序号分别为70和100。试问:(1)第一个报文段携带了多少个字节的数据?(2)主机B收到第一个报文段后发回的确认中的确认号应当是多少?(3)如果主机B收到第二个报文段后发回的确认中的确认号是180,试问A发送的第二个报文段中的数据有多少字节?(4)如果A发送的第一个报文段丢失了,但第二个报文段到达了B。B在第二个报文段到达后向A发送确认。试问这个确认号应为多少?

解:(1)第一个报文段的数据序号是70到99,共30字节的数据。

(2)确认号应为100.(3)80字节。(4)70

5—24一个TCP连接下面使用256kb/s的链路,其端到端时延为128ms。经测试,发现吞吐量只有120kb/s。试问发送窗口W是多少?(提示:可以有两种答案,取决于接收等发出确认的时机)。

解:来回路程的时延等于256ms(=128ms×2).设窗口值为X(注意:以字节为单位),假 定一次最大发送量等于窗口值,且发射时间等于256ms,那么,每发送一次都得停下来期待 再次得到下一窗口的确认,以得到新的发送许可.这样,发射时间等于停止等待应答的时间, 结果,测到的平均吞吐率就等于发送速率的一半,即 8X÷(256×1000)=256×0.001 X=8192 所以,窗口值为8192.

5—25为什么在TCP首部中要把TCP端口号放入最开始的4个字节?

答:在ICMP的差错报文中要包含IP首部后面的8个字节的内容,而这里面有TCP首部中的源端口和目的端口。当TCP收到ICMP差错报文时需要用这两个端口来确定是哪条连接出了差错。

5—26为什么在TCP首部中有一个首部长度字段,而UDP的首部中就没有这个这个字段?

答:TCP首部除固定长度部分外,还有选项,因此TCP首部长度是可变的。UDP首部长度是固定的。

5—27一个TCP报文段的数据部分最多为多少个字节?为什么?如果用户要传送的数据的字节长度超过TCP报文字段中的序号字段可能编出的最大序号,问还能否用TCP来传送?

答:65495字节,此数据部分加上TCP首部的20字节,再加上IP首部的20字节,正好是IP数据报的最大长度65535.(当然,若IP首部包含了选择,则IP首部长度超过20字节,这时TCP报文段的数据部分的长度将小于65495字节。)

数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,通过循环使用序号,仍能用TCP来传送。

5—28主机A向主机B发送TCP报文段,首部中的源端口是m而目的端口是n。当B向A发送回信时,其TCP报文段的首部中源端口和目的端口分别是什么?

答:分别是n和m。

5—29在使用TCP传送数据时,如果有一个确认报文段丢失了,也不一定会引起与该确认报文段对应的数据的重传。试说明理由。

答:还未重传就收到了对更高序号的确认。

5—30设TCP使用的最大窗口为65535字节,而传输信道不产生差错,带宽也不受限制。若报文段的平均往返时延为20ms,问所能得到的最大吞吐量是多少?

答:在发送时延可忽略的情况下,最大数据率=最大窗口*8/平均往返时间=26.2Mb/s。

5—31通信信道带宽为1Gb/s,端到端时延为10ms。TCP的发送窗口为65535字节。试问:可能达到的最大吞吐量是多少?信道的利用率是多少?

答:L=65536×8+40×8=524600

C=109b/s

L/C=0.0005246s

Td=10×10-3s

0.02104864

Throughput=L/(L/C+2×Td)=524600/0.0205246=25.5Mb/s

Efficiency=(L/C)//(L/C+2×D)=0.0255

最大吞吐量为25.5Mb/s。信道利用率为25.5/1000=2.55%

5—32答:Karn算法:在计算平均往返时延RTT时,只要报文段重传了,就不采用其往返时延样本。

设新往返时延样本Ti

RTT(1)=a*RTT(i-1)+(1-a)*T(i);

RTT^(i)=a* RTT(i-1)+(1-a)*T(i)/2;

RTT(1)=a*0+(1-a)*T(1)= (1-a)*T(1);

RTT^(1)=a*0+(1-a)*T(1)/2= RTT(1)/2

RTT(2)= a*RTT(1)+(1-a)*T(2);

RTT^(2)= a*RTT(1)+(1-a)*T(2)/2;

= a*RTT(1)/2+(1-a)*T(2)/2= RTT(2)/2

RTO=beta*RTT,在统计意义上,重传时间最后会减小到使用karn算法的1/2.

5—33答:(1)据RFC2988建议,RTO=RTTs+4*RTTd。其中RTTd是RTTs的偏差加权均值。

初次测量时,RTTd(1)= RTT(1)/2;

后续测量中,RTTd(i)=(1-Beta)* RTTd(i-1)+Beta*{ RTTs- RTT(i)};

Beta=1/4

依题意,RTT(1)样本值为1.5秒,则

RTTs(1)=RTT(1)=1.5s RTTd(1)=RTT(1)/2=0.75s

RTO(1)=RTTs(1)+4RTTd(1)=1.5+4*0.75=4.5(s)

(2)RTT(2)=2.5 RTTs(1)=1.5s RTTd(1)=0.75s

RTTd(2)=(1-Beta)* RTTd(1)+Beta*{ RTTs(1)- RT

(2)}=0.75*3/4+{1.5-2.5}/4=13/16

RTO(2)=RTTs(1)+4RTTd(2)=1.5+4*13/16=4.75s

5—34答:a=0.1, RTTO=30

RTT1=RTTO*(1-a) +26*a=29.6

RTT2=RTT1*a+32(1-a)=29.84

RTT3=RTT2*a+24(1-a)=29.256

三次算出加权平均往返时间分别为29.6,29.84和29.256ms。

可以看出,RTT的样本值变化多达20%时,加权平均往返

5—35答:5段链路的传播时延=250*2+(1500/150000)*3*1000=530ms

5段链路的发送时延=960/(48*1000)*5*1000=100ms

所以5段链路单程端到端时延=530+100=630ms

5—3答:慢开始:在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以分组注入到网络的速率更加合理。

解:(1)1Mb/s:传播时延=0.1/(2×108)=5×10-10 比特数=5×10-10×1×106=5×10-4

1Gb/s: 比特数=5×10-10×1×109=5×10-1

(2)1Mb/s: 传播时延=100/(2×108)=5×10-7 比特数=5×10-7×1×106=5×10-1

1Gb/s: 比特数=5×10-7×1×109=5×102

(3) 1Mb/s: 传播时延=100000/(2×108)=5×10-4 比特数=5×10-4×1×106=5×102

1Gb/s: 比特数=5×10-4×1×109=5×105

(4)1Mb/s: 传播时延=5000000/(2×108)=2.5×10-2 比特数=2.5×10-2×1×106=5×104

1Gb/s: 比特数=2.5×10-2×1×109=5×107

1-19 长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。再交给网络层传送,需加上20字节的IP首部。最后交给数据链路层的以太网传送,加上首部和尾部工18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。若应用层数据长度为1000字节,数据的传输效率是多少?

解:(1)100/(100+20+20+18)=63.3% (2)1000/(1000+20+20+18)=94.5%

1-20 网络体系结构为什么要采用分层次的结构?试举出一些与分层体系结构的思想相似的日常生活。

答:分层的好处: ①各层之间是独立的。某一层可以使用其下一层提供的服务而不需要知道服务是如何实现的。 ②灵活性好。当某一层发生变化时,只要其接口关系不变,则这层以上或以下的各层均不受影响。 ③结构上可分割开。各层可以采用最合适的技术来实现 ④易于实现和维护。 ⑤能促进标准化工作。

与分层体系结构的思想相似的日常生活有邮政系统,物流系统。

拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。拥塞避免算法使发送的拥塞窗口每经过一个往返时延RTT就增加一个MSS的大小。

快重传算法规定:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。

快恢复算法:当发送端收到连续三个重复的ACK时,就重新设置慢开始门限 ssthresh

与慢开始不同之处是拥塞窗口 cwnd 不是设置为 1,而是设置为ssthresh

若收到的重复的AVK为n个(n>3),则将cwnd设置为ssthresh

若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。

若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh

乘法减小:是指不论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前的拥塞窗口值乘以 0.5。当网络频繁出现拥塞时,ssthresh 值就下降得很快,以大大减少注入到网络中的分组数。

加法增大:是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口 cwnd增加一个 MSS 大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞。

5—38答:拥塞窗口大小分别为:1,2,4,8,9,10,11,12,1,2,4,6,7,8,9.

5—39答:(1)拥塞窗口与传输轮次的关系曲线如图所示(课本后答案):

(2)慢开始时间间隔:[1,6]和[23,26]

(3)拥塞避免时间间隔:[6,16]和[17,22]

(4)在第16轮次之后发送方通过收到三个重复的确认检测到丢失的报文段。在第22轮次之后发送方是通过超时检测到丢失的报文段。

(5)在第1轮次发送时,门限ssthresh被设置为32

在第18轮次发送时,门限ssthresh被设置为发生拥塞时的一半,即21.

在第24轮次发送时,门限ssthresh是第18轮次发送时设置的21

(6)第70报文段在第7轮次发送出。

(7)拥塞窗口cwnd和门限ssthresh应设置为8的一半,即4.

5—40答:当Ip数据报在传输过程中需要分片,但其中的一个数据报未能及时到达终点,而终点组装IP数据报已超时,因而只能丢失该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧没有足够的差错空间而只好丢弃。

5—42答:如果B不再发送数据了,是可以把两个报文段合并成为一个,即只发送FIN+ACK报文段。但如果B还有数据报要发送,而且要发送一段时间,那就不行,因为A迟迟收不到确认,就会以为刚才发送的FIN报文段丢失了,就超时重传这个FIN报文段,浪费网络资源。

5—43答:当A和B都作为客户,即同时主动打开TCP连接。这时的每一方的状态变迁都是:CLOSED----SYN-SENT---SYN-RCVD--ESTABLISHED

5—44答:设A,B建立了运输连接。协议应考虑一下实际可能性:

A或B故障,应设计超时机制,使对方退出,不至于死锁;

A主动退出,B被动退出

B主动退出,A被动退出

5—45答:当主机1和主机2之间连接建立后,主机1发送了一个TCP数据段并正确抵达主机2,接着主机1发送另一个TCP数据段,这次很不幸,主机2在收到第二个TCP数据段之前发出了释放连接请求,如果就这样突然释放连接,显然主机1发送的第二个TCP报文段会丢失。

而使用TCP的连接释放方法,主机2发出了释放连接的请求,那么即使收到主机1的确认后,只会释放主机2到主机1方向的连接,即主机2不再向主机1发送数据,而仍然可接受主机1发来的数据,所以可保证不丢失数据。

5—46答: 3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

假定B给A发送一个连接请求分组,A收到了这个分组,并发送了确认应答分组。按照两次握手的协定,A认为连接已经成功地建立了,可以开始发送数据分组。可是,B在A的应答分组在传输中被丢失的情况下,将不知道A是否已准备好,不知道A建议什么样的序列号,B甚至怀疑A是否收到自己的连接请求分组,在这种情况下,B认为连接还未建立成功,将忽略A发来的任何数据分组,只等待连接确认应答分组。

而A发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

5—47解:发送窗口较小的情况,发送一组nM个字节后必须停顿下来,等收到确认后继续发送。

共需K=[L/nM]个周期:其中

前K-1个周期每周期耗时M/R+RTT,共耗时(K-1)(M/R+RTT)

第K周期剩余字节数Q=L-(K-1)*nM,需耗时Q/R

总耗时=2*RTT+(K-1)M/(R+RTT)+Q/R=2*RTT+L/R+(K-1)[( M/R+RTT)-nM/R]

6-01 答:(1)域名的结构由标号序列组成,各标号之间用点隔开:

… . 三级域名 . 二级域名 . 顶级域名

各标号分别代表不同级别的域名。

(2)电话号码分为国家号结构分为(中国 +86)、区号、本机号。

6-02 答:域名系统的主要功能:将域名解析为主机能识别的IP地址。

因特网上的域名服务器系统也是按照域名的层次来安排的。每一个域名服务器都只对域名体系中的一部分进行管辖。共有三种不同类型的域名服务器。即本地域名服务器、根域名服务器、授权域名服务器。当一个本地域名服务器不能立即回答某个主机的查询时,该本地域名服务器就以DNS客户的身份向某一个根域名服务器查询。若根域名服务器有被查询主机的信息,就发送DNS回答报文给本地域名服务器,然后本地域名服务器再回答发起查询的主机。但当根域名服务器没有被查询的主机的信息时,它一定知道某个保存有被查询的主机名字映射的授权域名服务器的IP地址。通常根域名服务器用来管辖顶级域。根域名服务器并不直接对顶级域下面所属的所有的域名进行转换,但它一定能够找到下面的所有二级域名的域名服务器。每一个主机都必须在授权域名服务器处注册登记。通常,一个主机的授权域名服务器就是它的主机ISP的一个域名服务器。授权域名服务器总是能够将其管辖的主机名转换为该主机的IP地址。

因特网允许各个单位根据本单位的具体情况将本域名划分为若干个域名服务器管辖区。一般就在各管辖区中设置相应的授权域名服务器。

6-03 答:(1)把不方便记忆的IP地址转换为方便记忆的域名地址。(2)作用:可大大减轻根域名服务器的负荷,使因特网上的 DNS 查询请求和回答报文的数量大为减少。

6-05 答:(1)FTP使用客户服务器方式。一个FTP服务器进程可同时为多个客户进程提供服务。

FTP 的服务器进程由两大部分组成:一个主进程,负责接受新的请求;另外有若干个从属进程,负责处理单个请求。

主进程的工作步骤:1、打开熟知端口(端口号为 21),使客户进程能够连接上。

相关问题

  • 下列哪项属于因果推理模型() A. 因果图B. 符号推理模型C. 神经符号推理D. 结构因果模型

  • 在决策树建立过程中,使用一个属性对某个结点对应的数集合进行划分后,结果具有高信息熵(highentropy),对结果的描述,最贴切的是()。A. 纯度高B. 纯度低C. 有用D. 无用E. 以上描述都不贴切

  • 以下哪种方法属于卷积神经网络的基本组件()。A. 卷积层B. 池化层C. 激活函数D. 复制层

  • 路径排序算法的工作流程主要有三步()A. 特征计算B. 特征抽取C. 分类器训练D. 因果推断

  • 下列哪项属于因果推理模型()A. 因果图B. 神经符号推理C. 符号推理模型D. 结构因果模型

  • 下列哪项不是求解对抗搜索问题的基本算法( ) A.反向传播算法 B.广度优先排序算法 C.Alpha-Beta剪枝算法D.最小最大搜索算法

  • 下列哪项关于广度优先搜索的描述正确()A. 每次扩展时,该算法从边缘集合中取出最下层(最深)的节点B. 广度优先搜索算法是深度优先搜索算法的特例C. 每次扩展时,该算法从边缘集合中取出最上层(最浅)的节点D. 深度优先搜索是广度优先搜索的特例

  • 网络安全包括物理安全[1]、逻辑安全、操作系统安全及联网安全,其中逻辑安全包括访问控制[2]、加密、安全管理及用户身份认证。A. 正确B. 错误

  • 下列哪项贪婪最佳优先搜索算法的描述正确()A. 贪婪最佳优先搜索不属于启发式搜索算法B. 贪婪最佳优先搜索是一种A*搜索算法C. 贪婪最佳优先搜索是一种广度优先搜索算法D. 贪婪最佳优先搜索属于有信息搜索算法

  • 下列哪个方法属于知识图谱推理方法()A. 路径排序算法B. 深度学习推断C. 广度优先搜索D. 归纳逻辑程序设计

  • 由脸书(Facebook)公司开发的深度学习编程框架是()A. TensorFlowB. PaddlePaddleC. PyTorchD. Mindspore

  • 路径排序算法的工作流程主要有三步()A. 特征抽取B. 特征计算C. 分类器训练D. 因果推断

  • 网络安全包括物理安全[1]、逻辑安全、操作系统安全及联网安全,其中逻辑安全包括访问控制[2]、加密、安全管理及用户身份认证。A. 正确B. 错误

  • 7、 加强电脑安全防护,及时升级病 毒库,安装防火墙,及时查杀病毒和木马,是防范 电信网络诈骗的有效做法。A. 正确B. 错误

  • 2.单选题 讯飞星火可以实现多种文案类型和语言风格的文本写作。讯飞星火(网页版)“内容写作”功能可选的“语言风格”不包括( )。A. 口语化B. 高情商C. 专业D. 热情

  • 下列哪个方法属于知识图谱推理方法()A. 广度优先搜索B. 深度学习推断C. 路径排序算法D. 归纳逻辑程序设计

  • 下列哪项关于监督学习算法的描述正确()A. 强化学习的训练效果一定优于监督学习B. 主要的监督学习方法包括生成方法和判别方法C. 广度优先搜索算法是一种监督学习算法

  • AdaBoosting采用多个单一分类器组成一个强分类器()A. 错误B. 正确

  • 下列不属于量子机器学习算法的是()A. 量子支持向量机B. 量子主成分分析C. 薛定谔方程求解D. 深度量子学习

  • 3.判断题K-means聚类算法对数据的尺寸敏感。()A. 对B. 错

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号