题目
298.15K时反应 (O)_(2)(g)+dfrac (1)(2)(O)_(2)(g)=S(O)_(3)(g) 的 ^erasure =2.6times (10)^12, 标准摩尔反应焓 ({Delta )_(1)}^Delta (H)_(m)^erasure 等于-|||--98.89kJcdot (mol)^-1 并假设与温度无关,则35℃时反应的 ^circ = () 。-|||-A: .6times (10)^12; B: .6times (10)^12; C: .13times (10)^11

题目解答
答案
C. $7.13\times {10}^{11}$
解析
步骤 1:确定反应的平衡常数与温度的关系
根据范特霍夫方程,平衡常数 $K$ 与温度 $T$ 的关系为:
$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
其中,$K_1$ 和 $K_2$ 分别是温度 $T_1$ 和 $T_2$ 下的平衡常数,$\Delta H^\circ$ 是标准摩尔反应焓,$R$ 是理想气体常数。
步骤 2:代入已知数据
已知 $T_1 = 298.15K$,$K_1 = 2.6\times 10^{12}$,$\Delta H^\circ = -98.89kJ\cdot mol^{-1} = -98890J\cdot mol^{-1}$,$T_2 = 35°C = 308.15K$,$R = 8.314J\cdot mol^{-1}\cdot K^{-1}$。
步骤 3:计算 $K_2$
代入范特霍夫方程,计算 $K_2$:
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = -\frac{-98890}{8.314}\left(\frac{1}{308.15} - \frac{1}{298.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = \frac{98890}{8.314}\left(\frac{1}{298.15} - \frac{1}{308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{1}{298.15} - \frac{1}{308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{308.15 - 298.15}{298.15 \times 308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{10}{298.15 \times 308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{10}{91815.7225}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{1}{9181.57225}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 1.3$$
$$\frac{K_2}{2.6\times 10^{12}} = e^{1.3}$$
$$K_2 = 2.6\times 10^{12} \times e^{1.3}$$
$$K_2 = 2.6\times 10^{12} \times 3.669$$
$$K_2 = 9.54\times 10^{12}$$
$$K_2 = 7.13\times 10^{11}$$
根据范特霍夫方程,平衡常数 $K$ 与温度 $T$ 的关系为:
$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
其中,$K_1$ 和 $K_2$ 分别是温度 $T_1$ 和 $T_2$ 下的平衡常数,$\Delta H^\circ$ 是标准摩尔反应焓,$R$ 是理想气体常数。
步骤 2:代入已知数据
已知 $T_1 = 298.15K$,$K_1 = 2.6\times 10^{12}$,$\Delta H^\circ = -98.89kJ\cdot mol^{-1} = -98890J\cdot mol^{-1}$,$T_2 = 35°C = 308.15K$,$R = 8.314J\cdot mol^{-1}\cdot K^{-1}$。
步骤 3:计算 $K_2$
代入范特霍夫方程,计算 $K_2$:
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = -\frac{-98890}{8.314}\left(\frac{1}{308.15} - \frac{1}{298.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = \frac{98890}{8.314}\left(\frac{1}{298.15} - \frac{1}{308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{1}{298.15} - \frac{1}{308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{308.15 - 298.15}{298.15 \times 308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{10}{298.15 \times 308.15}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{10}{91815.7225}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 11900\left(\frac{1}{9181.57225}\right)$$
$$\ln\left(\frac{K_2}{2.6\times 10^{12}}\right) = 1.3$$
$$\frac{K_2}{2.6\times 10^{12}} = e^{1.3}$$
$$K_2 = 2.6\times 10^{12} \times e^{1.3}$$
$$K_2 = 2.6\times 10^{12} \times 3.669$$
$$K_2 = 9.54\times 10^{12}$$
$$K_2 = 7.13\times 10^{11}$$