题目
[题 4-34 ]测定某氨合成炉下部列管式换热器的传热系数。数据如下:反应后的热气体走-|||-管内,流量为 /h, 进、出口温度分别为485℃、154℃,平均比热容为 .04kJ/(kg(cdot )^circ C) 原料-|||-气主线走管外,流量为 /h, 进口温度为50℃,平均比热容为 .14kJ/(kg(cdot )^circ C) 已知换热-|||-器的传热面积为30 m^2,两流体逆向流动,试计算其总传热系数(忽略热损失)。

题目解答
答案

解析
步骤 1:计算管内热气体的热量传递
根据能量守恒原理,管内热气体的热量传递等于管外原料气的热量吸收。因此,我们首先计算管内热气体的热量传递。
\[ q_{m,n} = 6100 \, \text{kg/h} \]
\[ c_{p,n} = 3.04 \, \text{kJ/(kg{\cdot}^{\circ}C)} \]
\[ t_{n1} = 485 \, ^{\circ}C \]
\[ t_{n2} = 154 \, ^{\circ}C \]
\[ q_{m,n} \cdot c_{p,n} \cdot (t_{n1} - t_{n2}) = 6100 \times 3.04 \times (485 - 154) \]
\[ = 6100 \times 3.04 \times 331 \]
\[ = 6100 \times 1006.34 \]
\[ = 6138674 \, \text{kJ/h} \]
步骤 2:计算管外原料气的出口温度
根据能量守恒原理,管外原料气的热量吸收等于管内热气体的热量传递。因此,我们计算管外原料气的出口温度。
\[ q_{m,1} = 5800 \, \text{kg/h} \]
\[ c_{p,1} = 3.14 \, \text{kJ/(kg{\cdot}^{\circ}C)} \]
\[ t_{11} = 50 \, ^{\circ}C \]
\[ q_{m,1} \cdot c_{p,1} \cdot (t_{12} - t_{11}) = 6138674 \]
\[ 5800 \times 3.14 \times (t_{12} - 50) = 6138674 \]
\[ 18172 \times (t_{12} - 50) = 6138674 \]
\[ t_{12} - 50 = \frac{6138674}{18172} \]
\[ t_{12} - 50 = 337.8 \]
\[ t_{12} = 387.8 \, ^{\circ}C \]
步骤 3:计算对数平均温差
对数平均温差(Log Mean Temperature Difference, LMTD)是计算传热系数的重要参数。对于逆流流动,LMTD 可以通过以下公式计算:
\[ \Delta T_{lm} = \frac{(t_{n1} - t_{12}) - (t_{n2} - t_{11})}{\ln \left( \frac{t_{n1} - t_{12}}{t_{n2} - t_{11}} \right)} \]
\[ \Delta T_{lm} = \frac{(485 - 387.8) - (154 - 50)}{\ln \left( \frac{485 - 387.8}{154 - 50} \right)} \]
\[ \Delta T_{lm} = \frac{97.2 - 104}{\ln \left( \frac{97.2}{104} \right)} \]
\[ \Delta T_{lm} = \frac{-6.8}{\ln \left( 0.9346 \right)} \]
\[ \Delta T_{lm} = \frac{-6.8}{-0.067} \]
\[ \Delta T_{lm} = 101.5 \, ^{\circ}C \]
步骤 4:计算总传热系数
总传热系数(Overall Heat Transfer Coefficient, U)可以通过以下公式计算:
\[ U = \frac{q_{m,n} \cdot c_{p,n} \cdot (t_{n1} - t_{n2})}{A \cdot \Delta T_{lm}} \]
\[ U = \frac{6138674}{30 \times 101.5} \]
\[ U = \frac{6138674}{3045} \]
\[ U = 2016.2 \, \text{W/(m^2{\cdot}^{\circ}C)} \]
根据能量守恒原理,管内热气体的热量传递等于管外原料气的热量吸收。因此,我们首先计算管内热气体的热量传递。
\[ q_{m,n} = 6100 \, \text{kg/h} \]
\[ c_{p,n} = 3.04 \, \text{kJ/(kg{\cdot}^{\circ}C)} \]
\[ t_{n1} = 485 \, ^{\circ}C \]
\[ t_{n2} = 154 \, ^{\circ}C \]
\[ q_{m,n} \cdot c_{p,n} \cdot (t_{n1} - t_{n2}) = 6100 \times 3.04 \times (485 - 154) \]
\[ = 6100 \times 3.04 \times 331 \]
\[ = 6100 \times 1006.34 \]
\[ = 6138674 \, \text{kJ/h} \]
步骤 2:计算管外原料气的出口温度
根据能量守恒原理,管外原料气的热量吸收等于管内热气体的热量传递。因此,我们计算管外原料气的出口温度。
\[ q_{m,1} = 5800 \, \text{kg/h} \]
\[ c_{p,1} = 3.14 \, \text{kJ/(kg{\cdot}^{\circ}C)} \]
\[ t_{11} = 50 \, ^{\circ}C \]
\[ q_{m,1} \cdot c_{p,1} \cdot (t_{12} - t_{11}) = 6138674 \]
\[ 5800 \times 3.14 \times (t_{12} - 50) = 6138674 \]
\[ 18172 \times (t_{12} - 50) = 6138674 \]
\[ t_{12} - 50 = \frac{6138674}{18172} \]
\[ t_{12} - 50 = 337.8 \]
\[ t_{12} = 387.8 \, ^{\circ}C \]
步骤 3:计算对数平均温差
对数平均温差(Log Mean Temperature Difference, LMTD)是计算传热系数的重要参数。对于逆流流动,LMTD 可以通过以下公式计算:
\[ \Delta T_{lm} = \frac{(t_{n1} - t_{12}) - (t_{n2} - t_{11})}{\ln \left( \frac{t_{n1} - t_{12}}{t_{n2} - t_{11}} \right)} \]
\[ \Delta T_{lm} = \frac{(485 - 387.8) - (154 - 50)}{\ln \left( \frac{485 - 387.8}{154 - 50} \right)} \]
\[ \Delta T_{lm} = \frac{97.2 - 104}{\ln \left( \frac{97.2}{104} \right)} \]
\[ \Delta T_{lm} = \frac{-6.8}{\ln \left( 0.9346 \right)} \]
\[ \Delta T_{lm} = \frac{-6.8}{-0.067} \]
\[ \Delta T_{lm} = 101.5 \, ^{\circ}C \]
步骤 4:计算总传热系数
总传热系数(Overall Heat Transfer Coefficient, U)可以通过以下公式计算:
\[ U = \frac{q_{m,n} \cdot c_{p,n} \cdot (t_{n1} - t_{n2})}{A \cdot \Delta T_{lm}} \]
\[ U = \frac{6138674}{30 \times 101.5} \]
\[ U = \frac{6138674}{3045} \]
\[ U = 2016.2 \, \text{W/(m^2{\cdot}^{\circ}C)} \]