第2章 习题解答2-1 解释下列基本概念凝固,结晶,近程有序规则排列,显微组织,晶粒度,过冷度,自由能,体积自由能,结构起伏,能量起伏,均匀形核,非均匀形核,临界形核半径,临界形核功,形核率,长大速率,接触角,活性质点,变质处理,光滑界面,粗糙界面,温度梯度,树枝状结晶(枝晶),细晶粒区,柱状晶粒区、等轴状晶粒区,铸锭缺陷,定向凝固,急冷凝固,准晶(略)2-2 什么是晶胚?金属结晶时晶胚转变成晶核需满足哪些条件?答:在液态金属中,每一瞬间都会涌现出大量尺寸各异的结构起伏,不同尺寸的结构起伏就是形核的胚芽,称作晶胚。在一定的过冷度条件下,晶胚尺寸的晶胚,才能引起系统自由能变化降低,同时系统内部能量起伏能够补偿表面能升高部分的晶胚才有可能转变成晶核。2-3 若在液态金属中形成一个半径为的球形晶核,证明临界形核功与临界晶核体积之间的关系为。证明:因为根据式(2-10)和式(2-12)根据统计热力学理论,在给定温度T下,晶体中任一原子的能量高于∆Gf 的几率Pf,即晶体中能量高于∆Gf的原子所占原子百分数为而晶体中的平衡空位浓度Cv,即任一原子平衡位置出现空位的几率Pv,为显然,某一瞬间晶体中原子发生一次跳动的几率为P也等于该瞬间发生跳动原子所占的原子百分数。其中Q=∆Gf+∆Gv,就是空位扩散机制的扩散激活能。8-5影响原子扩散的因素有哪些?答:(1)温度。温度是影响扩散速率的最主要因素。温度越高,原子热激活能量越大,越易发生迁移,扩散系数越大。(2)固溶体类型。 不同类型的固溶体,原子的扩散机制是不同的。间隙固溶体的扩散激活能一般均较小,例如,C,N等溶质原子在铁中的间隙扩散激活能比Cr,Al等溶质原子在铁中的置换扩散激活能要小得多,因此,钢件表面热处理在获得同样渗层浓度时,渗C,N比渗Cr或Al等金属的周期短。(3)晶体结构。晶体结构对扩散有影响,有些金属存在同素异构转变,当它们的晶体结构改变后,扩散系数也随之发生较大的变化。例如铁在912℃时发生-Fe-Fe转变,-Fe的自扩散系数大约是-Fe的240倍。所有元素在-Fe中的扩散系数都比在-Fe中大,其原因是体心立方结构的致密度比面心立方结构的致密度小,原子较易迁移。(4)晶体缺陷。扩散物质通常可以沿三种途径扩散,即晶内扩散、晶界扩散和表面扩散。若以QL,QS和QB分别表示晶内、表面和晶界扩散激活能;DL,DS和DB分别表示晶内、表面和晶界的扩散系数,则一般规律是:QL>QB>QS,所以DS>DB>DL。晶界、表面和位错等对扩散起着快速通道的作用,这是由于晶体缺陷处点阵畸变较大,原子处于较高的能量状态,易于跳跃,故各种缺陷处的扩散激活能均比晶内扩散激活能小,加快了原子的扩散。(5)化学成分。不同金属的自扩散激活能与其点阵的原子间结合力有关,因而与表征原子间结合力的宏观参量,如熔点、熔化潜热、体积膨胀或压缩系数相关,熔点高的金属的自扩散激活能必然大。(6)应力的作用。如果合金内部存在着应力梯度,那么,即使溶质分布是均匀的,但也可能出现化学扩散现象。8-6 Cu-Al组成的扩散偶发生扩散时,标志面会向哪个方向移动?答:Al的熔点低于Cu,说明其键能较Cu低,Cu原子在Al中的扩散系数要高于Al原子在Cu中的扩散系数,因此Al-Cu扩散偶在发生扩散时标志面会向Cu的一侧移动。8-7钢铁渗氮温度一般选择在接近但略低于Fe-N系共析温度(590℃),问什么?答:因为低于共析温度,处于铁素体区,氮在铁素体区的扩散系数要大于其在奥氏体中的扩散系数,因此选择在略低于共析温度进行。8-8 为什么钢铁零件渗碳温度一般要选择γ相区中进行?若不在γ相区进行会有什么结果?答:因α-Fe中的最大碳熔解度(质量分数)只有0.0218%,对于含碳质量分数大于0.0218%的钢铁在渗碳时零件中的碳浓度梯度为零,渗碳无法进行,即使是纯铁,在α相区渗碳时铁中浓度梯度很小,在表也不能获得高含碳层;另外,由于温度低,扩散系数也很小,渗碳过程极慢,没有实际意义。γ-Fe中的碳固溶度高,渗碳时在表层可获得较高的碳浓度梯度使渗碳顺利进行。8-9 三元系发生扩散时,扩散层内能否出现两相共存区域,三相共存区?为什么?答:三元系扩散层内不可能存在三相共存区,但可以存在两相共存区。原因如下:三元系中若出现三相平衡共存,其二相中成分一定且不同相中同一组分的化学位相等,化学位梯度为零,扩散不可能发生。三元系在两相共存时,由于自由度数为2,在温度一定时,其组成相的成分可以发生变化,使两相中相同组元的原子化学位平衡受到破坏,引起扩散。8-10一块厚度为d的薄板,在T1温度下两侧的浓度分别为w1,w0(w1>w0),当扩散达到平稳态后,给出①扩散系数为常数,②扩散系数随浓度增加而增加,③扩散系数随浓度增加而减小等三种情况下浓度分布示意图。并求出①种情况板中部的浓度。答:一维扩散的平稳态有=常数①扩散系数为常数时,dC/dx也应为常数,故浓度分布是直线。其中部的浓度②扩散系数随浓度增加而增加时,dC/dx应随浓度增加而减小,浓度分布曲线是上凸的曲线。③扩散系数随浓度增加而减小时,dC/dx应随浓度增加而增加,浓度分布曲线是下凹的曲线。8-11氢在金属中扩散较快,因此用金属容器存储氢气会存在泄露。假设钢瓶内氢气压力为p,钢瓶置于真空中,其壁厚为h,并且已知氢在该金属中的扩散系数为D,而氢在钢中的溶解度服从,k为常数,p为钢瓶与氢气接触处的氢气压力。(1)写出氢通过器壁的扩散方程。(2)提出减少氢逸出的措施。答:达到稳态后,可以认为在有限时间内钢瓶内、外氢压力不变,因此钢瓶内部的氢浓度分布也不随时间发生变化,可以考虑采用扩散第一定律。(1),而钢瓶内壁,钢瓶外壁C’=0因此,(2)依据上式,可采取的措施有:改变容器材料,以减小D和k;降低容器内所存储氢气压力p;增加容器壁厚h。8-12 在纯铜圆柱体一个顶端电镀一层薄的放射性同位素铜。在高温退火20h后,对铜棒逐层剥层测量放射性强度α(α正比于浓度),数据如下:求铜的自扩散系数。
0.0218%,对于含碳质量分数大于0.0218%的钢铁在渗碳时零件中的碳浓度梯度为零,渗碳无法进行,即使是纯铁,在α相区渗碳时铁中浓度梯度很小,在表也不能获得高含碳层;另外,由于温度低,扩散系数也很小,渗碳过程极慢,没有实际意义。γ-Fe中的碳固溶度高,渗碳时在表层可获得较高的碳浓度梯度使渗碳顺利进行。8-9 三元系发生扩散时,扩散层内能否出现两相共存区域,三相共存区?为什么?答:三元系扩散层内不可能存在三相共存区,但可以存在两相共存区。原因如下:三元系中若出现三相平衡共存,其二相中成分一定且不同相中同一组分的化学位相等,化学位梯度为零,扩散不可能发生。三元系在两相共存时,由于自由度数为2,在温度一定时,其组成相的成分可以发生变化,使两相中相同组元的原子化学位平衡受到破坏,引起扩散。8-10一块厚度为d的薄板,在T1温度下两侧的浓度分别为w1,w0(w1>w0),当扩散达到平稳态后,给出①扩散系数为常数,②扩散系数随浓度增加而增加,③扩散系数随浓度增加而减小等三种情况下浓度分布示意图。并求出①种情况板中部的浓度。答:一维扩散的平稳态有=常数①扩散系数为常数时,dC/dx也应为常数,故浓度分布是直线。其中部的浓度②扩散系数随浓度增加而增加时,dC/dx应随浓度增加而减小,浓度分布曲线是上凸的曲线。③扩散系数随浓度增加而减小时,dC/dx应随浓度增加而增加,浓度分布曲线是下凹的曲线。8-11氢在金属中扩散较快,因此用金属容器存储氢气会存在泄露。假设钢瓶内氢气压力为p,钢瓶置于真空中,其壁厚为h,并且已知氢在该金属中的扩散系数为D,而氢在钢中的溶解度服从,k为常数,p为钢瓶与氢气接触处的氢气压力。(1)写出氢通过器壁的扩散方程。(2)提出减少氢逸出的措施。答:达到稳态后,可以认为在有限时间内钢瓶内、外氢压力不变,因此钢瓶内部的氢浓度分布也不随时间发生变化,可以考虑采用扩散第一定律。(1),而钢瓶内壁,钢瓶外壁C’=0因此,(2)依据上式,可采取的措施有:改变容器材料,以减小D和k;降低容器内所存储氢气压力p;增加容器壁厚h。8-12 在纯铜圆柱体一个顶端电镀一层薄的放射性同位素铜。在高温退火20h后,对铜棒逐层剥层测量放射性强度α(α正比于浓度),数据如下:求铜的自扩散系数。
题目解答
答案
解:因放射性同位素强度α和浓度C成正比,C=Bα,B为比例常数。根据高斯解有
上式取对数,得
,把数据转换成lnα和x2,得
用线性回归,方程得
a=8.659 b=935.82
8-13 一块含0.1%C的碳钢在930℃渗碳,渗到0.05cm的地方碳的浓度达到0.45%。在t>0的全部时间,渗碳气氛保持表面成分为1%,假设D=2.0×10-5exp(-140000/RT) (m2/s),
(a) 计算渗碳时间;
(b) 若将渗层加深一倍,则需多长时间?
(c)若规定0.3%C作为渗碳层厚度的量度,则在930℃渗碳10小时的渗层厚度为870℃渗碳10小时的多少倍?
答案: (a) 由Fick第二定律得:
,查表可得:
,
t≈1.0×104(s)
(b) 由关系式,得:
,
两式相比,得:
当温度相同时,D1=D2,于是得:
(c)
因为: t930=t870, D930=1.67×10-7(cm2/s)
D870=0.2×exp(-140000/8.314×1143)≈8.0×10-8(cm2/s)
所以:(倍)
8-14 有两种激活能分别为Q1=83.7KJ/mol和Q2=251KJ/mol的扩散反应。观察在温度从25℃升高到600℃时对这两种扩散的影响,并对结果作出评述。
答案:由得:
对于温度从298K提高到873K,扩散速率D分别提高4.6×109和9.5×1028倍,显示出温度对扩散速率的重要影响。当激活能越大,扩散速率对温度的敏感性越大。
8-15根据实际测定lgD与1/T的关系图,计算单晶体银和多晶体银在低于700℃温度范围的扩散激活能,并说明两者扩散激活能差异的原因。
答:多晶体银激活能122.4kJ,单晶体银的扩散激活能194.5KJ。
单晶体的扩散是体扩散,而多晶体存在晶界,晶界的“短路”扩散作用,使扩散速率增大,从而扩散激活能较小。