题目
2-18 已知反应 (O)_(2)(g)+(O)_(2)(g)arrow 2S(O)_(3)(g) 在427℃和527℃时的K°值分别为 https:/img.zuoyebang.cc/zyb_7b9dfab6939f940ad5d811bcf594cee8.jpg.0times (10)^5 和 https:/img.zuoyebang.cc/zyb_7b9dfab6939f940ad5d811bcf594cee8.jpg.1times -|||-10^2,求该反应的 Delta (H)_(m)

题目解答
答案

解析
步骤 1:确定反应的平衡常数与温度的关系
根据范特霍夫方程,平衡常数K与温度T的关系为:
$$\ln K = -\frac{\Delta H_m}{R} \left(\frac{1}{T}\right) + C$$
其中,$\Delta H_m$ 是反应的摩尔焓变,R是理想气体常数,C是常数项。
步骤 2:利用已知的平衡常数和温度计算 $\Delta H_m$
已知在427℃和527℃时的K°值分别为 $1.0\times {10}^{5}$ 和 $1.1\times {10}^{2}$,将温度转换为开尔文温度,即427℃=700K,527℃=800K。将这些值代入范特霍夫方程,得到两个方程:
$$\ln(1.0\times {10}^{5}) = -\frac{\Delta H_m}{R} \left(\frac{1}{700}\right) + C$$
$$\ln(1.1\times {10}^{2}) = -\frac{\Delta H_m}{R} \left(\frac{1}{800}\right) + C$$
步骤 3:解方程组求解 $\Delta H_m$
将两个方程相减,消去C,得到:
$$\ln(1.0\times {10}^{5}) - \ln(1.1\times {10}^{2}) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1.0\times {10}^{5}}{1.1\times {10}^{2}}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1.0\times {10}^{3}}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{800-700}{700\times 800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{100}{700\times 800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{5600}\right)$$
$$\Delta H_m = -R \ln\left(\frac{1000}{1.1}\right) \left(\frac{5600}{1}\right)$$
$$\Delta H_m = -8.314 \ln\left(\frac{1000}{1.1}\right) \times 5600$$
$$\Delta H_m = -8.314 \times 6.907755 \times 5600$$
$$\Delta H_m = -317000 J/mol$$
$$\Delta H_m = -317 kJ/mol$$
根据范特霍夫方程,平衡常数K与温度T的关系为:
$$\ln K = -\frac{\Delta H_m}{R} \left(\frac{1}{T}\right) + C$$
其中,$\Delta H_m$ 是反应的摩尔焓变,R是理想气体常数,C是常数项。
步骤 2:利用已知的平衡常数和温度计算 $\Delta H_m$
已知在427℃和527℃时的K°值分别为 $1.0\times {10}^{5}$ 和 $1.1\times {10}^{2}$,将温度转换为开尔文温度,即427℃=700K,527℃=800K。将这些值代入范特霍夫方程,得到两个方程:
$$\ln(1.0\times {10}^{5}) = -\frac{\Delta H_m}{R} \left(\frac{1}{700}\right) + C$$
$$\ln(1.1\times {10}^{2}) = -\frac{\Delta H_m}{R} \left(\frac{1}{800}\right) + C$$
步骤 3:解方程组求解 $\Delta H_m$
将两个方程相减,消去C,得到:
$$\ln(1.0\times {10}^{5}) - \ln(1.1\times {10}^{2}) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1.0\times {10}^{5}}{1.1\times {10}^{2}}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1.0\times {10}^{3}}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{700} - \frac{1}{800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{800-700}{700\times 800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{100}{700\times 800}\right)$$
$$\ln\left(\frac{1000}{1.1}\right) = -\frac{\Delta H_m}{R} \left(\frac{1}{5600}\right)$$
$$\Delta H_m = -R \ln\left(\frac{1000}{1.1}\right) \left(\frac{5600}{1}\right)$$
$$\Delta H_m = -8.314 \ln\left(\frac{1000}{1.1}\right) \times 5600$$
$$\Delta H_m = -8.314 \times 6.907755 \times 5600$$
$$\Delta H_m = -317000 J/mol$$
$$\Delta H_m = -317 kJ/mol$$