题目
已知单元体的应力状态如图所示,图中应力单位皆为MPa。试用解析法及图解法求:-|||-(1)主应力大小,主平面位置。-|||-(2)在单元体上作出主平面位置及主应力方向。-|||-(3)图示平面内的极值切应力。-|||-20-|||-square 50-|||-(a)-|||-square 50-|||-20-|||-(b)-|||-(b) (c)-|||-80 30-|||-square 20 square 20 20-|||-20-|||-一 square 40-|||-40-|||-(d)-|||-(e) (f)

题目解答
答案




解析
题目主要考察二向应力状态下主应力、主平面位置及极值切应力的计算,涉及解析法(公式计算)和图解法(应力圆)两种方法。以下是关键知识点和解题思路:
核心公式回顾
- 主应力公式:
$\sigma_{\text{max/min}} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$ - 主平面方位角公式:
$\tan 2\alpha_0 = -\frac{2\tau_{xy}}{\sigma_x - \sigma_y}$ - 极值切应力公式:
$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$
各图(a-f)详细解析
图(a)
- 已知:$\sigma_x=50\,\text{MPa}$, $\sigma_y=0$, $\tau_{xy}=20\,\text{MPa}$
- 主应力:
$\sigma_{\text{max}} = \frac{50+0}{2} + \sqrt{\left(\frac{50-0}{2}\right)^2 + 20^2} = 25 + \sqrt{625 + 400} = 57\,\text{MPa}$
$\sigma_{\text{min}} = 25 - \sqrt{1025} = -7\,\text{MPa}$
按记号规定:$\sigma_1=57\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-7\,\text{MPa}$ - 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times20}{50-0} = -0.8 \implies \alpha_0=-19^\circ20'$ - 极值切应力:
$\tau_{\text{max}} = \frac{57 - (-7)}{2} = 32\,\text{MPa}$
图(b)
- 已知:$\sigma_x=50\,\text{MPa}$, $\sigma_y=0$, $\tau_{xy}=-20\,\text{MPa}$
- 主应力:同图(a),$\sigma_1=57\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-7\,\text{MPa}$
- 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times(-20)}{50-0} = 0.8 \implies \alpha_0=19^\circ20'$ - 极值切应力:$\tau_{\text{max}}=32\,\text{MPa}$
图(c)
- 已知:$\sigma_x=0$, $\sigma_y=0$, $\tau_{xy}=25\,\text{MPa}$
- 主应力:
$\sigma_{\text{max}} = \sqrt{25^2} = 25\,\text{MPa}, \quad \sigma_{\text{min}} = -25\,\text{MPa}$
按记号规定:$\sigma_1=25\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-25\,\text{MPa}$ - 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times25}{0-0} = -\infty \implies \alpha_0=-45^\circ$ - 极值切应力:
$\tau_{\text{max}} = \frac{25 - (-25)}{2} = 25\,\text{MPa}$
图(d)
- 已知:$\sigma_x=-40\,\text{MPa}$, $\sigma_y=-20\,\text{MPa}$, $\tau_{xy}=-40\,\text{MPa}$
- 主应力:
$\sigma_{\text{max}} = \frac{-40-20}{2} + \sqrt{\left(\frac{-40+20}{2}\right)^2 + (-40)^2} = -30 + \sqrt{100 + 1600} = 11.2\,\text{MPa}$
$\sigma_{\text{min}} = -30 - \sqrt{1700} = -71.2\,\text{MPa}$
按记号规定:$\sigma_1=11.2\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-71.2\,\text{MPa}$ - 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times(-40)}{-40+20} = -4 \implies \alpha_0=-38^\circ$ - 极值切应力:
$\tau_{\text{max}} = \frac{11.2 - (-71.2)}{2} = 41.2\,\text{MPa}$
图(e)
- 已知:$\sigma_x=0$, $\sigma_y=-80\,\text{MPa}$, $\tau_{xy}=20\,\text{MPa}$
- 主应力:
$\sigma_{\text{max}} = \frac{0-80}{2} + \sqrt{\left(\frac{0+80}{2}\right)^2 + 20^2} = -40 + \sqrt{1600 + 400} = 4.7\,\text{MPa}$
$\sigma_{\text{min}} = -40 - \sqrt{2000} = -84.7\,\text{MPa}$
按记号规定:$\sigma_1=4.7\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-84.7\,\text{MPa}$ - 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times20}{0+80} = -0.5 \implies \alpha_0=-13^\circ17'$ - 极值切应力:
$\tau_{\text{max}} = \frac{4.7 - (-84.7)}{2} = 44.7\,\text{MPa}$
图(f)
- 已知:$\sigma_x=-20\,\text{MPa}$, $\sigma_y=30\,\text{MPa}$, $\tau_{xy}=20\,\text{MPa}$
- 主应力:
$\sigma_{\text{max}} = \frac{-20+30}{2} + \sqrt{\left(\frac{-20-30}{2}\right)^2 + 20^2} = 5 + \sqrt{625 + 400} = 37\,\text{MPa}$
$\sigma_{\text{min}} = 5 - \sqrt{1025} = -27\,\text{MPa}$
按记号规定:$\sigma_1=37\,\text{MPa}$, $\sigma_2=0$, $\sigma_3=-27\,\text{MPa}$ - 主平面方位:
$\tan 2\alpha_0 = -\frac{2\times20}{-20-30} = 0.8 \implies \alpha_0=19^\circ20'$ - 极值切应力:
$\tau_{\text{max}} = \frac{37 - (-27)}{2} = 32\,\text{MPa}$