17.根据下列在298K和标准压力下的热力学数据,计算-|||-HgO(s)在该温度时的解离压。-|||-(1)电池 |(H)_(2)((P{H)_(2)})|NaOH(a)|HgO(s)|Hg(1) 的标准电-|||-动势 ^theta =0.9265V ;-|||-(2)反应 _(2)(g)+dfrac (1)(2)(O)_(2)(g)=!=!= (H)_(2)O(1) 的 (Delta )_({H)^+}^theta =-|||-.-285.83kJcdot (mol)^-1 ;-|||-(3)298K时,下表为各物质的标准摩尔熵值:-|||-化合物 HgO(s) O2(g) H2O(1) Hg(1) H2(g)-|||-_(m)/(Jcdot (mol)^-1cdot (K)^-1) 70.29 205.1 69.91 77.4 130.7

题目解答
答案

解析
本题主要考察利用热力学数据计算HgO(s)在298K时的解离压,涉及原电池反应、盖斯定律、热力学函数(吉布斯自由能变、熵变)以及解离压的计算,具体思路如下:
步骤1:分析电池反应及总反应
题目给出电池:$\text{Pt}|H_2(p_{H_2})|\text{NaOH}(a)|\text{HgO}(s)|\text{Hg}(l)$,其电极反应及总反应为:
- 负极(氧化):$H_2(p_{H_2}) + 2OH^-(a_{OH^-}) - 2e^- \rightarrow 2H_2O(l)$
- 正极(还原):$\text{HgO}(s) + H_2O + 2e^- \rightarrow \text{Hg}(l) + 2OH^-(a_{OH^-})$
- 总反应(①):$H_2(p_{H_2}) + \text{HgO}(s) \rightarrow \text{Hg}(l) + H_2O(l)$
步骤2:结合已知反应②构造目标反应③
已知反应②:$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$,$\Delta H_m^\theta = -285.83\ \text{kJ·mol}^{-1}$。
通过总反应①减去反应②,得到目标反应③:
$\text{HgO}(s) \rightarrow \text{Hg}(l) + \frac{1}{2}O_2(p_{O_2})$
步骤3:计算反应①的$\Delta_r G_m^\theta$
电池标准电动势$E^\theta = 0.9265\ \text{V}$,电子转移数$z=2$。
根据公式$\Delta_r G_m^\theta = -zFE^\theta$:
$\Delta_r G_m^\theta(1) = -2 \times 96500\ \text{C·mol}^{-1} \times 0.9265\ \text{V} = -178.81\ \text{kJ·mol}^{-1}$
步骤4:计算反应②的$\Delta_r G_m^\theta$
利用$\Delta_r G_m^\theta = \Delta_r H_m^\theta - T\Delta_r S_m^\theta$:
- 反应②的熵变:
$\Delta_r S_m^\theta(2) = S_m(H_2O,l) - S_m(H_2) - \frac{1}{2}S_m(O_2) = 69.91 - 130.7 - 0.5 \times 205.1 = -163.34\ \text{J·mol}^{-1}·K^{-1}$ - 代入计算:
$\Delta_r G_m^\theta(2) = -285830\ \text{J·mol}^{-1} - 298\ \text{K} \times (-163.34\ \text{J·mol}^{-1}·K^{-1}) = -237.15\ \text{kJ·mol}^{-1}$
步骤5:计算反应③的$\Delta_r G_m^\theta$及解离压
根据盖斯定律,$\Delta_r G_m^\theta(3) = \Delta_r G_m^\theta(1) - \Delta_r G_m^\theta(2)$:
$\Delta_r G_m^\theta(3) = -178.81 - (-237.15) = 58.34\ \text{kJ·mol}^{-1ash}x}x}$
反应③的平衡常数$K_p^\theta = \left( \frac{p(O_2)}{p^\theta} \right)^{1/2}$,由$\ln K_p^\theta = -\frac{\Delta_r G_m^\theta(3)}{RT}$:
$\ln K_p^\theta = -\frac{58340}{8.3145 \times 298} = -23.546 \implies K_p^\theta = 5.944 \times 10^{-11}$
解离压$p(O_2) = p^\theta (K_p^\theta)^2$:
$p(O_2) = 100000\ \text{Pa} \times (5.94timestimes 10^{-11})^2 = 3.5 \times 10^{-16}\ \text{Pa}$