F=应力×初始面积=0.7π=2.2N*例9-12 一个球形的气球由与上题相同的橡胶做成。如果气球的直径为2cm,壁厚1cm,问当它吹成直径为2.2,2.5,3,5和10cm时内压力为多少? 解:过剩内压力P=2F/2,式中F为单位长度的表面张力,为半径。如果初始厚度是t,F=G(1-1/λ6)t,式中G=E/3,λ是直径的胀大倍数。内压力为大气压(105Pa)加0.317,0.472,0.487,0.318和0.160×105Pa。注意P在低膨胀倍数时有极值(在较大直径时橡胶并不是新虎克固体)。9.2 应力-应变曲线 例9-13 画出聚合物的典型应力—应变曲线,并在曲线上标出下列每一项:a.抗张强度;b伸长率;c.屈服点,d.模量. 解:例9-14 拉伸某试样,给出如下数据:ε×103 5 10 20 30 40 50 60 70 80 90 100 120 150 σ(磅/英寸2)250 500 950 1250 1470 1565 1690 1660 1500 1400 1385 1380 1380(断)作应力-应变曲线图,并计算杨氏模量,屈服应力和屈服时的伸长率。这个材料的抗张强度是多少?(注:1磅/英寸2=0.6887×104Pa) 解:杨氏模量 E=5×104磅/英寸2=3.44×108Pa 屈服应力 磅/英寸2=1.16×107Pa 屈服时的伸长率 (即6%) 抗张强度 磅/英寸2=9.5×106Pa例9-15 试证明应力-应变曲线下的面积比例于拉伸试样所做的功。 解: ∵ ∴ ∴ 可见应力-应变曲线下的面积与拉伸功成正比,它的大小表征高聚物的韧度。 例9-16 不同聚合物的应力—应变曲线可分为五个基本类型.它们是: 例2-14 判断正误:“分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才能结晶,无规立构的高分子不能结晶。” 解:错。无规立构不等于没有对称性,况且对称性不是唯一的结构影响因素,柔顺性和分子间作用力也很重要。一些无规立构的聚合物如聚乙烯醇(结晶度达30%)、聚三氟氯乙烯(结晶度达90%以上)等均能结晶。 错误分析:“若两种均聚物有相同类型的结晶结构,也能结晶如两种尼龙”这里将无规立构与无规共聚混为一谈。易混淆的还有“无规线团”。这三种“无规”完全是不同的概念。例2-15 为什么聚对苯二甲酸乙二酯从熔体淬火时得到透明体?为什么IPMMA是不透明的? 解:聚对苯二甲酸乙二酯的结晶速度很慢,快速冷却时来不及结晶,所以透明。等规PMMA结晶能力大,结晶快,所以它的试样是不透明的。例2-16 试分析聚三氟氯乙烯是否结晶性聚合物?要制成透明薄板制品,问成型过程中要注意什么条件的控制? 解:是结晶性聚合物,由于氯原子与氟原子大小差不多,分子结构的对称性好,所以易结晶。 成型过程中要使制品快速冷却,以降低结晶度并使晶粒更细小,才能得到透明薄板。例2-17 聚合物在结晶过程中会发生体积收缩现象,为什么? 图2-4是含硫量不同的橡皮在结晶过程中体积改变与时间的关系,从这些曲线关系能得出什么结论?试讨论之。 图2-4 含硫量不同的橡皮在结晶过程中体积改变与时间的关系 解:结晶中分子链的规则堆砌使密度增加,从而结晶过程中发生体积收缩。 橡胶含硫量增加,减少了结晶能力,结晶程度和结晶速度都下降,表现在曲线最大的体积收缩率%和曲线斜率都减少。例2-18 透明的聚酯薄膜在室温二氧六环中浸泡数分钟就变为不透明,这是为什么? 解:称溶剂诱导结晶,有机溶剂渗入聚合物分子链之间降低了高分子链间相互作用力,使链段更易运动,从而Tg降低至室温以下而结晶。例2-19 已知PE的结晶密度为1000KgM-3,无定形PE的密度为865KgM-3,计算密度为970KgM-3的线形PE和密度为917KgM-3的支化PE的.并解释为什么两者的结晶度相差这么大? 解:线形PE 支化PE 线性PE由于对称性比支化PE好,所以结晶度大。 请定义以下术语:软的、硬的、强的、弱的、韧的、脆的.并给以上曲线举一种以上的聚合物实例. 解:模量:大——硬,小——软 屈服强度(或断裂强度):大——强,小——弱 断裂伸长:大——韧,小——脆 软而弱,例如聚合物凝胶 硬而脆,例如PS,PMMA,固化酚醛树脂 硬而强,例如硬PVC和PS共混体,硬PVC 软而韧,例如橡皮,增塑的PVC,PE,PTFE 硬而韧,尼龙,醋酸纤维素,PC,PP例9-17 研究玻璃态高聚物的大形变常用什么实验方法,说明高聚物中两种断裂类型的特点并画出两种断裂的典型应力—应变曲线. 解:研究玻璃态高聚物的大形变常用拉力机对高聚物样品进行拉伸实验。 例9-18 说明高聚物中两种断裂的特点,并画出两种断裂的应力-应变曲线。 解:高聚物的破坏有两种形式,脆性断裂和韧性断裂。脆和韧是借助日常生活用语,没有确切的科学定义,只能根据应力-应变曲线和断面的外貌来区分。若深入研究,两种有以下不同: (1)韧性断裂特点:断裂前对应塑性;沿长度方向的形变不均匀,过屈服点后出现细颈;断裂伸长()较大;断裂时有推迟形变;应力与应变呈非线性,断裂耗能大;断裂面粗糙无凹槽;断裂发生在屈服点后,一般由剪切分量引起;对应的分子运动机理是链段的运动。(2)脆性断裂:断裂前对应弹性;沿长度方向形变均匀,断裂伸长率一般小于5%;断裂时无推迟形变,应力-应变曲线近线性,断裂能耗小;断裂面平滑有凹槽;断裂发生在屈服点前;一般由拉伸分量引起的;对应的分子机理是化学键的破坏。脆性断裂与韧性断裂的应力-应变曲线见图9-8。 图9-8应力-应变曲线例9-19 聚合物的许多应力—应变曲线中,屈服点和断裂点之间的区域是一平台.这平台区域的意义是什么?温度升高或降低能使平台的尺寸增加或减少?
F=应力×初始面积=0.7π=2.2N
*例9-12 一个球形的气球由与上题相同的橡胶做成。如果气球的直径为2cm,壁厚1cm,问当它吹成直径为2.2,2.5,3,5和10cm时内压力为多少? 解:过剩内压力P=2F/2,式中F为单位长度的表面张力,为半径。如果初始厚度是t,F=G(1-1/λ6)t,式中G=E/3,λ是直径的胀大倍数。内压力为大气压(105Pa)加0.317,0.472,0.487,0.318和0.160×105Pa。注意P在低膨胀倍数时有极值(在较大直径时橡胶并不是新虎克固体)。
9.2 应力-应变曲线 例9-13 画出聚合物的典型应力—应变曲线,并在曲线上标出下列每一项:a.抗张强度;b伸长率;c.屈服点,d.模量. 解:
例9-14 拉伸某试样,给出如下数据:
ε×103
5
10
20
30
40
50
60
70
80
90
100
120
150
σ(磅/英寸2)
250
500
950
1250
1470
1565
1690
1660
1500
1400
1385
1380
1380(断)
作应力-应变曲线图,并计算杨氏模量,屈服应力和屈服时的伸长率。这个材料的抗张强度是多少?(注:1磅/英寸2=0.6887×104Pa) 解:杨氏模量 E=5×104磅/英寸2=3.44×108Pa 屈服应力 磅/英寸2=1.16×107Pa 屈服时的伸长率 (即6%) 抗张强度 磅/英寸2=9.5×106Pa
例9-15 试证明应力-应变曲线下的面积比例于拉伸试样所做的功。 解: ∵ ∴ ∴ 可见应力-应变曲线下的面积与拉伸功成正比,它的大小表征高聚物的韧度。 例9-16 不同聚合物的应力—应变曲线可分为五个基本类型.它们是:
例2-14 判断正误:“分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才能结晶,无规立构的高分子不能结晶。” 解:错。无规立构不等于没有对称性,况且对称性不是唯一的结构影响因素,柔顺性和分子间作用力也很重要。一些无规立构的聚合物如聚乙烯醇(结晶度达30%)、聚三氟氯乙烯(结晶度达90%以上)等均能结晶。 错误分析:“若两种均聚物有相同类型的结晶结构,也能结晶如两种尼龙”这里将无规立构与无规共聚混为一谈。易混淆的还有“无规线团”。这三种“无规”完全是不同的概念。
例2-15 为什么聚对苯二甲酸乙二酯从熔体淬火时得到透明体?为什么IPMMA是不透明的? 解:聚对苯二甲酸乙二酯的结晶速度很慢,快速冷却时来不及结晶,所以透明。等规PMMA结晶能力大,结晶快,所以它的试样是不透明的。
例2-16 试分析聚三氟氯乙烯是否结晶性聚合物?要制成透明薄板制品,问成型过程中要注意什么条件的控制? 解:是结晶性聚合物,由于氯原子与氟原子大小差不多,分子结构的对称性好,所以易结晶。 成型过程中要使制品快速冷却,以降低结晶度并使晶粒更细小,才能得到透明薄板。
例2-17 聚合物在结晶过程中会发生体积收缩现象,为什么? 图2-4是含硫量不同的橡皮在结晶过程中体积改变与时间的关系,从这些曲线关系能得出什么结论?试讨论之。 图2-4 含硫量不同的橡皮在结晶过程中体积改变与时间的关系 解:结晶中分子链的规则堆砌使密度增加,从而结晶过程中发生体积收缩。 橡胶含硫量增加,减少了结晶能力,结晶程度和结晶速度都下降,表现在曲线最大的体积收缩率%和曲线斜率都减少。
例2-18 透明的聚酯薄膜在室温二氧六环中浸泡数分钟就变为不透明,这是为什么? 解:称溶剂诱导结晶,有机溶剂渗入聚合物分子链之间降低了高分子链间相互作用力,使链段更易运动,从而Tg降低至室温以下而结晶。
例2-19 已知PE的结晶密度为1000KgM-3,无定形PE的密度为865KgM-3,计算密度为970KgM-3的线形PE和密度为917KgM-3的支化PE的.并解释为什么两者的结晶度相差这么大? 解:线形PE 支化PE 线性PE由于对称性比支化PE好,所以结晶度大。
请定义以下术语:软的、硬的、强的、弱的、韧的、脆的.并给以上曲线举一种以上的聚合物实例. 解:模量:大——硬,小——软 屈服强度(或断裂强度):大——强,小——弱 断裂伸长:大——韧,小——脆 软而弱,例如聚合物凝胶 硬而脆,例如PS,PMMA,固化酚醛树脂 硬而强,例如硬PVC和PS共混体,硬PVC 软而韧,例如橡皮,增塑的PVC,PE,PTFE 硬而韧,尼龙,醋酸纤维素,PC,PP
例9-17 研究玻璃态高聚物的大形变常用什么实验方法,说明高聚物中两种断裂类型的特点并画出两种断裂的典型应力—应变曲线. 解:研究玻璃态高聚物的大形变常用拉力机对高聚物样品进行拉伸实验。
例9-18 说明高聚物中两种断裂的特点,并画出两种断裂的应力-应变曲线。 解:高聚物的破坏有两种形式,脆性断裂和韧性断裂。脆和韧是借助日常生活用语,没有确切的科学定义,只能根据应力-应变曲线和断面的外貌来区分。若深入研究,两种有以下不同: (1)韧性断裂特点:断裂前对应塑性;沿长度方向的形变不均匀,过屈服点后出现细颈;断裂伸长()较大;断裂时有推迟形变;应力与应变呈非线性,断裂耗能大;断裂面粗糙无凹槽;断裂发生在屈服点后,一般由剪切分量引起;对应的分子运动机理是链段的运动。
(2)脆性断裂:断裂前对应弹性;沿长度方向形变均匀,断裂伸长率一般小于5%;断裂
时无推迟形变,应力-应变曲线近线性,断裂能耗小;断裂面平滑有凹槽;断裂发生在屈服点前;一般由拉伸分量引起的;对应的分子机理是化学键的破坏。脆性断裂与韧性断裂的应力-应变曲线见图9-8。 图9-8应力-应变曲线
例9-19 聚合物的许多应力—应变曲线中,屈服点和断裂点之间的区域是一平台.这平台区域的意义是什么?温度升高或降低能使平台的尺寸增加或减少?
题目解答
答案
解:(1)平台区域是强迫高弹形变,在外力作用下链段发生运动。 对结晶高分子,伴随发生冷拉和细颈化,结晶中分子被抽出,冷拉区域由于未冷却部分的减少而扩大,直至整个区域试样处于拉伸状态。 (2)平台的大小与温度有很大关系。温度较低时,聚合物是脆的,在达到屈服点之前断裂,不出现平台,因此温度降低,平台区变小。
例9-20 一个取向了的单结晶聚合物样品在X光衍射仪上在张力作用下形变,(002)晶面的衍射峰位置随样品上应力的增加而变的数据如下: 应力/MNm-2 布拉格角/度 0 37.483 40 37.477 80 37.471 120 37.466 160 37.460 200 37.454 假定作用在晶体上的应力等于施加在整个样品上的应力,计算在聚合物中晶体沿链方向上的杨氏模量.(用CuKa=0.1542nm) 解: ∵
∴
σ(MNm-2) | d(nm) | |
0 | d0=0.1267 | 0 |
40 | 0.126717 | 1.364×10-4 |
80 | 0.126734 | 2.730×10-4 |
120 | 0.126749 | 3.867×10-4 |
160 | 0.126766 | 5.240×10-4 |
200 | 0.126783 | 6.606×10-4 |
以σ对ε作图,从斜率求得E=3.018×106MNm-2
例9-21 用作图法求出某材料的屈服点
解:根据Considere作图法以ε=-1点向曲线作切线,切点便是屈服点。
*例9-22 根据下列测定数据,计算聚乙烯的理论强度(N/m2),并与实际强度5.88×107N/m2比较。