题目
(3)设随机变量X的分布律为 X=k =dfrac (c)(k!)! , k=0 ,1,2,···,则 ((X)^2)= __ .

题目解答
答案

解析
步骤 1:确定常数c
由于随机变量X的分布律为 $P\{ X=k\} =\dfrac {c}{k!}$,且所有概率之和为1,我们有
$$\sum_{k=0}^{\infty} P\{ X=k\} = \sum_{k=0}^{\infty} \dfrac {c}{k!} = 1$$
根据泰勒级数展开,我们知道
$$e^x = \sum_{k=0}^{\infty} \dfrac {x^k}{k!}$$
因此,当$x=1$时,我们有
$$e = \sum_{k=0}^{\infty} \dfrac {1}{k!}$$
所以,$c = 1/e$。
步骤 2:计算$E(X)$
根据期望的定义,我们有
$$E(X) = \sum_{k=0}^{\infty} k \cdot P\{ X=k\} = \sum_{k=0}^{\infty} k \cdot \dfrac {1/e}{k!}$$
由于$k=0$时,$k \cdot \dfrac {1/e}{k!} = 0$,我们可以从$k=1$开始求和
$$E(X) = \sum_{k=1}^{\infty} k \cdot \dfrac {1/e}{k!} = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {k}{k!}$$
注意到$\dfrac {k}{k!} = \dfrac {1}{(k-1)!}$,因此
$$E(X) = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {1}{(k-1)!} = \dfrac {1}{e} \sum_{k=0}^{\infty} \dfrac {1}{k!} = \dfrac {1}{e} \cdot e = 1$$
步骤 3:计算$E(X^2)$
根据期望的定义,我们有
$$E(X^2) = \sum_{k=0}^{\infty} k^2 \cdot P\{ X=k\} = \sum_{k=0}^{\infty} k^2 \cdot \dfrac {1/e}{k!}$$
由于$k=0$时,$k^2 \cdot \dfrac {1/e}{k!} = 0$,我们可以从$k=1$开始求和
$$E(X^2) = \sum_{k=1}^{\infty} k^2 \cdot \dfrac {1/e}{k!} = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {k^2}{k!}$$
注意到$\dfrac {k^2}{k!} = \dfrac {k}{(k-1)!} = \dfrac {k-1+1}{(k-1)!} = \dfrac {k-1}{(k-1)!} + \dfrac {1}{(k-1)!} = \dfrac {1}{(k-2)!} + \dfrac {1}{(k-1)!}$,因此
$$E(X^2) = \dfrac {1}{e} \sum_{k=1}^{\infty} \left( \dfrac {1}{(k-2)!} + \dfrac {1}{(k-1)!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=1}^{\infty} \dfrac {1}{(k-2)!} + \sum_{k=1}^{\infty} \dfrac {1}{(k-1)!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=-1}^{\infty} \dfrac {1}{k!} + \sum_{k=0}^{\infty} \dfrac {1}{k!} \right)$$
注意到$\sum_{k=-1}^{\infty} \dfrac {1}{k!} = \sum_{k=0}^{\infty} \dfrac {1}{k!} + 1$,因此
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=0}^{\infty} \dfrac {1}{k!} + 1 + \sum_{k=0}^{\infty} \dfrac {1}{k!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( 2e + 1 \right)$$
$$E(X^2) = 2 + \dfrac {1}{e}$$
由于$e$的值约为2.71828,$\dfrac {1}{e}$的值约为0.36788,因此
$$E(X^2) = 2 + 0.36788 = 2.36788$$
由于随机变量X的分布律为 $P\{ X=k\} =\dfrac {c}{k!}$,且所有概率之和为1,我们有
$$\sum_{k=0}^{\infty} P\{ X=k\} = \sum_{k=0}^{\infty} \dfrac {c}{k!} = 1$$
根据泰勒级数展开,我们知道
$$e^x = \sum_{k=0}^{\infty} \dfrac {x^k}{k!}$$
因此,当$x=1$时,我们有
$$e = \sum_{k=0}^{\infty} \dfrac {1}{k!}$$
所以,$c = 1/e$。
步骤 2:计算$E(X)$
根据期望的定义,我们有
$$E(X) = \sum_{k=0}^{\infty} k \cdot P\{ X=k\} = \sum_{k=0}^{\infty} k \cdot \dfrac {1/e}{k!}$$
由于$k=0$时,$k \cdot \dfrac {1/e}{k!} = 0$,我们可以从$k=1$开始求和
$$E(X) = \sum_{k=1}^{\infty} k \cdot \dfrac {1/e}{k!} = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {k}{k!}$$
注意到$\dfrac {k}{k!} = \dfrac {1}{(k-1)!}$,因此
$$E(X) = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {1}{(k-1)!} = \dfrac {1}{e} \sum_{k=0}^{\infty} \dfrac {1}{k!} = \dfrac {1}{e} \cdot e = 1$$
步骤 3:计算$E(X^2)$
根据期望的定义,我们有
$$E(X^2) = \sum_{k=0}^{\infty} k^2 \cdot P\{ X=k\} = \sum_{k=0}^{\infty} k^2 \cdot \dfrac {1/e}{k!}$$
由于$k=0$时,$k^2 \cdot \dfrac {1/e}{k!} = 0$,我们可以从$k=1$开始求和
$$E(X^2) = \sum_{k=1}^{\infty} k^2 \cdot \dfrac {1/e}{k!} = \dfrac {1}{e} \sum_{k=1}^{\infty} \dfrac {k^2}{k!}$$
注意到$\dfrac {k^2}{k!} = \dfrac {k}{(k-1)!} = \dfrac {k-1+1}{(k-1)!} = \dfrac {k-1}{(k-1)!} + \dfrac {1}{(k-1)!} = \dfrac {1}{(k-2)!} + \dfrac {1}{(k-1)!}$,因此
$$E(X^2) = \dfrac {1}{e} \sum_{k=1}^{\infty} \left( \dfrac {1}{(k-2)!} + \dfrac {1}{(k-1)!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=1}^{\infty} \dfrac {1}{(k-2)!} + \sum_{k=1}^{\infty} \dfrac {1}{(k-1)!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=-1}^{\infty} \dfrac {1}{k!} + \sum_{k=0}^{\infty} \dfrac {1}{k!} \right)$$
注意到$\sum_{k=-1}^{\infty} \dfrac {1}{k!} = \sum_{k=0}^{\infty} \dfrac {1}{k!} + 1$,因此
$$E(X^2) = \dfrac {1}{e} \left( \sum_{k=0}^{\infty} \dfrac {1}{k!} + 1 + \sum_{k=0}^{\infty} \dfrac {1}{k!} \right)$$
$$E(X^2) = \dfrac {1}{e} \left( 2e + 1 \right)$$
$$E(X^2) = 2 + \dfrac {1}{e}$$
由于$e$的值约为2.71828,$\dfrac {1}{e}$的值约为0.36788,因此
$$E(X^2) = 2 + 0.36788 = 2.36788$$